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Comprendre l'Équation de Schrödinger et la mécanique ondulatoire 

: Une Perspective Didactique via le Quadrivecteur 

Fréquences/Vecteurs d'Onde et l'Analyse Harmonique.1 

 

Introduction :  

Objectif pédagogique 
La mécanique quantique, avec son formalisme ondulatoire, a révolutionné notre compréhension 

du monde microscopique. Au cœur de cette révolution se trouve l'équation de Schrödinger, pierre 

angulaire qui décrit l'évolution des systèmes quantiques. Cependant, sa dérivation historique est 

souvent perçue comme un saut conceptuel, partant de postulats qui peuvent sembler abstraits au 

premier abord. 

Ce document propose un exercice didactique et une perspective alternative pour appréhender 

l'équation de Schrödinger et les concepts fondamentaux de la mécanique ondulatoire. Loin d'être 

une dérivation physique rigoureuse au sens strict et historique, cette démarche se veut une 

construction mathématique originale, conçue pour éclairer les liens profonds entre des domaines 

apparemment distincts de la physique : la relativité restreinte, l'analyse harmonique (notamment 

l'oscillateur) et la mécanique quantique elle-même. 

En partant de l'hypothèse d'une particule au repos modélisée comme un oscillateur harmonique 

abstrait, nous explorerons comment les principes de la relativité transforment cette oscillation en 

une onde progressive pour une particule en mouvement. Un rôle central sera accordé au 

quadrivecteur fréquences/vecteurs d'onde, qui servira de pont conceptuel essentiel pour passer 

de la description relativiste de l'énergie et de l'impulsion à la formulation ondulatoire. Nous 

aboutirons ainsi à l'équation de Schrödinger dépendante et indépendante du temps, avant 

d'étendre notre réflexion aux paquets d'ondes, à l'interprétation probabiliste de la fonction 

d'onde, au principe d’incertitude et aux harmoniques sphériques. 

Cet exercice vise à fournir une intuition précieuse sur la structure mathématique de la mécanique 

ondulatoire, en montrant comment divers outils conceptuels peuvent converger vers une 

description unifiée du comportement des particules. Il est destiné à enrichir la compréhension des 

étudiants et des passionnés en offrant une vision complémentaire de ces phénomènes 

fondamentaux. 

Hypothèse de travail 
Nous postulons, dans le cadre de cet exercice, qu'une particule au repos peut être modélisée par 

un oscillateur harmonique abstrait de fréquence f₀ = m₀c²/h, où cette fréquence est directement 

liée à l'énergie de masse via la relation de Planck-Einstein. Cette hypothèse, purement 

mathématique, nous servira de point de départ pour construire une représentation ondulatoire. 

Pour vous initier à la relativité, je vous invite à lire mon document sur la relativité restreinte : 

https://liensphysique.science.blog/wp-content/uploads/2025/06/introduction-relativite-restreinte-rm-20250626.pdf 

 

1. Relation de de Broglie et équation de Schrödinger : https://www.youtube.com/watch?v=l6DJOhu9CHE&t=2880s 

https://liensphysique.science.blog/wp-content/uploads/2025/06/introduction-relativite-restreinte-rm-20250626.pdf
https://www.youtube.com/watch?v=l6DJOhu9CHE&t=2880s
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On associe à une particule au repos (observée depuis un référentiel immobile par rapport à la 

particule) une fréquence 𝒇𝟎  qui est proportionnelle à son énergie de masse   

 

𝑬𝟎 = 𝒎𝟎 𝒄
𝟐               é𝑛𝑒𝑟𝑔𝑖𝑒 𝑑𝑒 𝑙𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑒 𝑎𝑢 𝑟𝑒𝑝𝑜𝑠 𝑠𝑒𝑙𝑜𝑛 𝑙𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑡é 𝑟𝑒𝑠𝑡𝑟𝑒𝑖𝑛𝑡𝑒 

 

En considérant les équations suivantes   

 

𝑬 = 𝒉  𝒇                    𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑙𝑎𝑛𝑘 − 𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 →  é𝑛𝑒𝑟𝑔𝑖𝑒 𝑑′𝑢𝑛 𝑝ℎ𝑜𝑡𝑜𝑛   

 

𝑬 = 𝒎 𝒄𝟐 = 𝒉 𝒇       𝑃𝑜𝑠𝑡𝑢𝑙𝑎𝑡 𝑑𝑒 𝑑𝑒 𝐵𝑟𝑜𝑔𝑙𝑖𝑒 𝑝𝑜𝑢𝑟 𝑙𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑒 𝑚𝑎𝑠𝑠𝑖𝑞𝑢𝑒1 

 

Il en résulte que  

𝒇𝟎 =
𝒎𝟎 𝒄

𝟐

𝒉
 et  𝒎𝟎 =

𝒉 𝒇𝟎 

𝒄𝟐
  

 

Comment écrire l’équation d’oscillation ? 

 

En supposant la particule animée d'un mouvement d'oscillation de type oscillateur harmonique, 

comment peut-on écrire l'équation d'oscillation ? 

 

Considérons le cas où la particule est immobile dans un référentiel R1, son seul mouvement est son 

mouvement d’oscillation.  

 

Si nous prenons l’oscillation comme un déplacement dans l’espace, la relativité restreinte nous 

dicte de considérer aussi son déplacement selon l’axe temporel. 

 

En partant de l’équation de Minkowski 

 

𝒅𝒔𝟐 = −𝒄𝟐 𝒅𝒕𝟐 + 𝒅𝒙𝟐 + 𝒅𝒚𝟐 + 𝒅𝒛𝟐 (1) 

 

 

Nous pouvons la réécrire tel que   

 

𝒅𝒔𝟐 = 𝒊𝟐 𝒄𝟐 𝒅𝒕𝟐 + 𝒅𝒙𝟐 + 𝒅𝒚𝟐 + 𝒅𝒛𝟐                                                (2) 

 

 

Équation mathématiquement équivalente2. Le temps imaginaire est un artifice mathématique 
pour faciliter le traitement de la situation. Il n’est qu’un outil de calcul et non une hypothèse 
physique. Nous remplaçons une rotation hyperbolique dans l’espace-temps par une rotation 
euclidienne complexe dans l’espace-temps plus facile à manipuler. 
 

1. Recherches sur la théorie des Quanta, Louis de Broglie, page 14 : https://tel.archives-ouvertes.fr/tel-00006807/document 

2. Albert Einstein, La théorie de la relativité restreinte et général (1954, ire édition, Gauthier-Villars, Paris, ISBN 2-04-002566-9), 

Appendice II 

https://tel.archives-ouvertes.fr/tel-00006807/document
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En tenant compte que de l’axe des « x », aucun déplacement sur les axes « y » et « z » 

 

𝒅𝒔𝟐 = (𝒊𝒄𝒅𝒕)𝟐 + 𝒅𝒙𝟐                                                           (𝟑) 

 

Ce qui est la formule de Pythagore d’un triangle rectangle ou la formule d’un cercle de rayon 
« ds » avec le triangle rectangle inscrit dans le cercle.  
 

Reportons graphiquement cette relation dans un plan complexe 

 

 

 

 

 

 

Figure 11 Figure 2 

 

 

 

𝒅𝒔𝟐 = 𝒊𝟐 𝒄𝟐 𝒅𝒕𝟐 + 𝒅𝒙𝟐 
 

𝒅𝒔𝟐 = 𝒊𝟐 (𝒄𝒕 − 𝟎)𝟐 + (𝒙 − 𝟎)𝟐 
 

𝒅𝒔𝟐 = 𝒊𝟐 (𝒄𝒕)𝟐 + 𝒙𝟐 
 

 

 

 

Figure 1 : Représentation graphique nombre du complexe z = x + i y = r eiφ   =  r [ cos(φ ) + i sin(φ ) ] 

Figure 2 : Représentation graphique du nombre complexe z = dx + i cdt = ds eiφ  = ds [ cos(φ ) + i 

sin(φ ) ] 

𝒕𝒂𝒏𝜑 = 𝑖𝑐𝑡/𝑥 = 𝑖 𝑐/𝑣 

L’angle « imaginaire φ » ou « angle complexe » est fonction de la vitesse. φ  = arctan (i c/v) 

 
1. Nombre complexe : 

https://fr.wikipedia.org/wiki/Nombre_complexe#:~:text=Un%20nombre%20complexe%20z%20se,que%20i2%20%3D%20%E

2%80%931. 

https://fr.wikipedia.org/wiki/Nombre_complexe#:~:text=Un%20nombre%20complexe%20z%20se,que%20i2%20%3D%20%E2%80%931
https://fr.wikipedia.org/wiki/Nombre_complexe#:~:text=Un%20nombre%20complexe%20z%20se,que%20i2%20%3D%20%E2%80%931
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Dans le cas d’un oscillateur harmonique, lorsque X est maximal la vitesse est nulle, le temps du 

référentiel R1 est synchrone avec le temps propre de la particule. Lorsque X est au point X0, la 

vitesse de la particule est maximale, le « décalage » entre le temps de R1 et le temps propre de la 

particule est maximal. 

Le déplacement de la particule se fait dans le continuum espace-temps, le temps étant représenté 

sur l’axe imaginaire « ict ». Pour tout déplacement sur l’axe des « x », en tenant compte de la 

vitesse, correspond un déplacement sur l’axe « ict ». Le déplacement de « ict » est déphasé de π/2 

par rapport à « x ». 

En considérant la particule comme un oscillateur harmonique immobile dans un référentiel R1 et 

en tenant compte que de la dimension spatiale, l’oscillation de base peut être décrite avec 

l’équation 

 

𝑿(𝒕) =  𝑿𝒎𝒂𝒙  (𝐜𝐨𝐬(𝟐 𝝅 𝒇𝟎 𝒕))      𝑡 = 𝑡𝑒𝑚𝑝𝑠 𝑑𝑢 𝑟é𝑓é𝑟𝑒𝑛𝑐𝑖𝑒𝑙 𝑅1 

 

Pour positionner la particule dans l’espace-temps à 4 dimensions, nous devons ajouter la partie 

temporelle. Variation identique à « x », mais déphasée de π/2 sur l’axe imaginaire. Ce qui donne le 

nombre imaginaire Z. 

 

𝒁 (𝒕) =  𝑿𝒎𝒂𝒙  (𝐜𝐨𝐬(𝟐 𝝅 𝒇𝟎 𝒕) + 𝒊 𝒔𝒊𝒏(𝟐 𝝅 𝒇𝟎 𝒕))    𝑡 = 𝑡𝑒𝑚𝑝𝑠 𝑑𝑢 𝑟é𝑓é𝑟𝑒𝑛𝑐𝑖𝑒𝑙 R1 

 

𝑜𝑢 é𝑐𝑟𝑖𝑡 𝑠𝑒𝑙𝑜𝑛 𝑙𝑎 𝑝𝑢𝑙𝑠𝑎𝑡𝑖𝑜𝑛 
  

𝒁 (𝒕) =  𝑿𝒎𝒂𝒙  (𝐜𝐨𝐬(𝝎𝟎 𝒕) + 𝒊 𝐬𝐢𝐧(𝝎𝟎 𝒕) )                                                     (4) 

 

PARTICULE EN DÉPLACEMENT  
 

Observé d'un référentiel inertiel dans lequel la particule se déplace à vitesse constante v, le 

phénomène d'oscillation est perçu comme une onde progressive.  

 

La fréquence d’oscillation est affectée par des effets relativistes conséquence de la vitesse relative 

entre le référentiel de la particule et le référentiel d’observation.   

 

Son comportement se déduit du quadrivecteur énergie-impulsion pour former le quadrivecteur 

fréquences/vecteurs d'onde. 

P = 
 

m 0 v 
   La quadri-quantité de mouvement est la masse multipliée 

par la quadri-vitesse. M0  ≡  masse au repos, immobile. 

 

   p m0 c     cosh () p  m0 c     

   p m0 vx
      cosh () p  m0 vx    cosh () p  m0 c 

P =   p m0 vy   P =  cosh () p  m0 vy  P =  sinh  () p  m0 c 

      p m0 vz     cosh () p  m0 vz     
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Remplaçons "m0" par son équivalent "h f0 /c2" 

       cosh () p hf0/c2 c     

  cosh () p hf0/c2 c     cosh () p hf0/c2 vx    cosh () p hf0/c2 c 

P =  sinh  () p hf0/c2 c   P =  cosh () p hf0/c2 vy  P =  cosh () p hf0/c2 v 

          cosh () p hf0/c2  vz     

 

 

La formule de la relativité restreinte « c2 Δ t2 – (dx2 + dy2 + dz2) = constante » étant de type 

hyperbolique, nous pouvons appliquer la trigonométrie hyperbolique aux phénomènes de la 

relativité restreinte. Le graphique suivant est représentatif des effets relativistes sur l’oscillation 

associée à la particule. 
 

 

E en Hz  (E= h f avec h=1) P en Hz/(m/s) (h=1)  f0 = m0 c2/h        = atanh (v/c) 

E0 /c = f0 /c  = 1 / λ0             (particule immobile)    

E0      = f0         = c / λ0 

Et /c  = ftotale /c  = cosh () p f0/c  (énergie totale de la particule)               Et =  ft = cosh () p f0         (5)      

                                         ft / f0 = cosh () p =  p = t / τ  = 
𝟏

√𝟏−
𝒗𝟐

𝒄𝟐

                                                                                           (6) 

 

Photon 

Particule massique 
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P = sinh () p  f0/c  =  p  p m0 c = cosh () p v/c f0/ c2 c      P = sinh(atanh(v/c))*f0/c      

P = cosh () p  f0/c  v/c                                                                                             () 

P = ft /c  v/c    =  ft  v/c2    =  Et  v/c2                                                                                                                                                                                 () 

P = cosh () p  1/ λ0  v/c   =    1/λdB                                                                                                                                                           ()            

λdB = c/ sinh () p  f0          

 

Ecinétique = Et – E0   =   fc  = ft – f0   =  cosh (θ) f0 - f0   =  f0 (cosh (θ) -1)  Ec = f0*((cosh(atanh(v/c)))-1)      () 

𝑬𝒄𝒊𝒏é𝒕𝒊𝒒𝒖𝒆 = 𝑓𝑐 = 𝑓0 (
𝑡

𝜏
− 1)      = acosh ((fc/f0)+1)                 

 

 

Nous pouvons faire 2 constats importants : 

 

1. La fréquence d’oscillation de la particule en mouvement vu du référentiel R1 est 

augmentée. Ceci découlant de la différence d’écoulement du temps entre le 

référentiel de la particule et le référentiel R1. Déduit de (6). 

 

     ft  = t / τ  f0    avec    t / τ  >=1 

 

2. Le déplacement engendre un vecteur d’onde par effet relativiste. Ce vecteur d’onde 

dépend de la différence d’écoulement du temps entre le référentiel de la particule et 

le référentiel R1 et du rapport entre la vitesse de la particule et la vitesse de la lumière. 

  

P = sinh () p  f0/c   =  cosh () p  f0/c  v/c    =  t / τ   1/ λ0  v/c      =     1/λdB                 

 

Nous remarquons facilement qu'une augmentation de vitesse se répercute par une augmentation 

de fréquence et une diminution de la longueur d'onde. 

 

 

Énergie = Hz  nombre de cycles / seconde           Impulsion = 1/λ  nombre de cycles / mètre 
 

f0  = fréquence proportionnelle à l’énergie de masse au repos. Fréquence de Compton 

ft = fréquence en fonction de l’énergie totale de la particule 

λ0    la longueur d’onde de Compton est en fait cette longueur d’onde 

λdB  la longueur d’onde de de Broglie est en fait cette longueur d’onde 

 

L’effet relativiste génère l’équivalent d’une onde progressive.  

Déterminons l'équation de cette onde progressive de 𝜳 associée à la particule en mouvement. 

Statuons que la particule se déplace selon l’axe X (cet axe X est indépendant de l’axe X de 

l’oscillateur harmonique). 
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Donc, par les effets relativistes, la fréquence 𝑓0 est perçue augmentée et nous la notons 𝑓𝑡.    

 

𝑓𝑡 = cosh(𝜃) 𝑓0 

 

De ce fait, la vitesse angulaire 𝜔0 deviens 𝜔𝑡 

 

𝜔𝑡 = 2𝜋 𝑓𝑡 = 2𝜋 cosh(𝜃) 𝑓0 

 

Par effet purement relativiste, nous pouvons associer une longueur d’onde au phénomène 

oscillatoire. C’est la longueur d’onde de de Broglie. 

Le vecteur d’onde k en fonction λdB est 

 

𝑘𝑑𝑏 =
2𝜋

𝜆𝑑𝐵
       𝑘𝑑𝑏 𝑒𝑠𝑡 en radian/mètre 

 

Bien que la fréquence propre 𝒇𝟎 =
𝒎𝟎 𝒄

𝟐

𝒉
  ne soit pas directement observable — en raison de sa 

nature interne — elle constitue néanmoins la source fondamentale du comportement ondulatoire 

mesurable des particules. 

En effet, dès qu’une particule est en mouvement inertiel par rapport à un référentiel, cette 

fréquence se manifeste par un effet de phase relativiste, engendrant une onde spatiale 

progressive caractérisée par la longueur d’onde de de Broglie : 

𝜆𝑑𝐵 =
ℎ

𝑝
 

Cette onde de phase — bien que ne transportant ni matière ni énergie — produit des effets 

physiques mesurables, tels que les interférences, la diffraction, ou les motifs de Young, observés 

expérimentalement avec des électrons, neutrons, atomes ou molécules. Remarque, les motifs 

observés expérimentalement sont la manifestation statistique de la densité de probabilité donnée 

par |𝜳|𝟐, et non de la fonction d’onde elle-même (sujet que nous traiterons ultérieurement) 

On peut donc interpréter l’onde de de Broglie comme la projection spatiale visible de l’oscillation 

propre invisible 𝒇𝟎, transformée par la relativité restreinte. Autrement dit : 

Le déplacement rend visible, sous forme d’onde, ce qui était une simple oscillation interne.  

L’équation d’oscillation découlant de (4) en fonction du déplacement s’écrit 

 

𝜳(𝒙, 𝒕) =  𝜳𝟎 (𝐜𝐨𝐬( 𝒌𝒅𝑩 𝒙 − 𝝎𝒕  𝒕) + 𝒊 𝐬𝐢𝐧( 𝒌𝒅𝑩 𝒙 − 𝝎𝒕  𝒕))                       (11) 

 

 𝑡 = 𝑡𝑒𝑚𝑝𝑠 𝑑𝑢 𝑟é𝑓é𝑟𝑒𝑛𝑡𝑖𝑒𝑙 𝑑𝑢 𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑖𝑟𝑒 
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Horizontal (vert) l’axe X, vertical (bleu) l’axe du temps qui est imaginaire, en rouge la fonction 

d’onde résultante de la combinaison des deux paramètres. Il faut bien comprendre que l’équation 

d’onde découle d’une représentation mathématique abstraite de l’espace-temps, ce qui doit être 

pris en compte dans toute tentative d’interprétation physique. 

 

 

L’équation d’oscillation (11) en fonction de f0 

𝜳(𝒙, 𝒕) =  𝜳𝟎 (𝐜𝐨𝐬(𝒌𝒅𝑩 𝒙 −  𝟐 𝝅 𝐜𝐨𝐬𝐡(𝜽)  𝒇𝟎  𝒕 ) + 𝒊 𝐬𝐢𝐧(𝒌𝒅𝑩 𝒙 −  𝟐 𝝅 𝐜𝐨𝐬𝐡(𝜽)  𝒇𝟎  𝒕 )) 

 

Pour une transition rigoureuse entre référentiels :  voir l’annexe A 

 

 

En partant de 

 

1

𝜆𝑑𝐵
 = cosh(𝜃) 𝑓0

𝑣

𝑐2
  =  𝑓𝑡

𝑣

𝑐2
  

 

𝑘𝑑𝑏 =
2𝜋

𝜆𝑑𝐵
  =  2𝜋 𝑓𝑡

𝑣

𝑐2
  

  

Introduisons ces relations dans l'équation d'onde (11), nous obtenons 

 

𝛹(𝑥, 𝑡) =  𝛹0 (cos (2 𝜋 𝑓𝑡
𝑣

𝑐2
 𝑥 −   2 𝜋  𝑓𝑡 𝑡) + i sin (2 𝜋 𝑓𝑡

𝑣

𝑐2
 𝑥 −   2 𝜋  𝑓𝑡 𝑡) ) 

 

Mettons  2 𝜋 𝑓𝑡  en facteur  

 

𝜳(𝒙, 𝒕) =  𝜳𝟎  (𝐜𝐨𝐬 (𝟐 𝝅 𝒇𝒕  (
𝒗

𝒄𝟐
 𝒙 − 𝒕 )) +  𝐢 𝐬𝐢𝐧 (𝟐 𝝅 𝒇𝒕   (

𝒗

𝒄𝟐
 𝒙 − 𝒕 )))             (12) 
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Équation du mouvement 

 

À partir de l’équation (12) reformulée sous la forme d’une exponentielle de « e » 

𝜳(𝒙, 𝒕) =  𝜳𝟎   𝐞
𝒊(𝟐𝝅𝒇𝒕(

𝒗

𝒄𝟐
  𝒙 −𝒕))

                                                  (13) 

 

 
Équation de propagation 
 
Recherche de l’équation de propagation associée à l’équation d’onde (13) 

Calcul des dérivées partielles 

Soit : 

 

𝜙(𝑥, 𝑡) =  2𝜋𝑓𝑡 (
𝑣

𝑐2
  𝑥 − 𝑡)  

Alors : 

• Première dérivée par rapport à x : 

𝜕𝛹(𝑥, 𝑡)

𝜕𝑥
=  𝑖 2𝜋𝑓𝑡

𝑣

𝑐2
 𝛹(𝑥, 𝑡)   

 

• Deuxième dérivée par rapport à x : 

 

𝜕2𝛹(𝑥, 𝑡)

𝜕𝑥2
= − (2𝜋𝑓𝑡

𝑣

𝑐2
)
2

  𝛹(𝑥, 𝑡)   

 

• Première dérivée par rapport à t : 

 

𝜕𝛹(𝑥, 𝑡)

𝜕𝑡
= − 𝑖 2𝜋𝑓𝑡  𝛹(𝑥, 𝑡)     

 

 

• Deuxième dérivée par rapport à t : 

 

𝜕2𝛹(𝑥, 𝑡)

𝜕𝑡2
= − (2𝜋𝑓𝑡)

2  𝛹(𝑥, 𝑡)   

 

 

Équation d’onde 

Comme déduit précédemment : 

 

• 𝒌𝒅𝑩 = 𝟐𝝅𝒇𝒕
𝒗

𝒄𝟐
   

• 𝝎𝒕 = 𝟐𝝅𝒇𝒕   
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On a alors : 

𝜕2𝛹(𝑥, 𝑡)

𝜕𝑥2
= −𝑘𝑑𝐵

2   𝛹(𝑥, 𝑡)   

 

et  

 

𝜕2𝛹(𝑥, 𝑡)

𝜕𝑡2
= − 𝜔𝑡

2  𝛹(𝑥, 𝑡)   

 

 

On divise les deux membres pour obtenir une relation entre les dérivées : 

 

𝜕2𝛹(𝑥, 𝑡)

𝜕𝑥2
= (

𝑘𝑑𝐵
2

𝜔𝑡
2 )
𝜕2𝛹(𝑥, 𝑡)

𝜕𝑡2
   

 

 

 

Mais comme : 

 

𝑘𝑑𝐵 = 2𝜋𝑓𝑡
𝑣

𝑐2
, 𝜔𝑡 = 2𝜋𝑓𝑡  =>    

𝑘𝑑𝐵
2

𝜔𝑡
2 = (

𝑣

𝑐2
)
2

    

 

 

Donc l’équation différentielle satisfaite par Ψ(x, t) est : 

 

𝝏𝟐𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
= (

𝒗

𝒄𝟐
)
𝟐

 
𝝏𝟐𝜳(𝒙, 𝒕)

𝝏𝒕𝟐
   

 
   (14) 

ou de manière équivalente : 

 

 

 

(
𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) − (

𝒗

𝒄𝟐
)
𝟐

 (
𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒕𝟐
) = 𝟎  

 

   (15) 

 

 

 

Cette équation est une équation d’onde où la vitesse de phase de propagation est : 

 

𝒖 = (
𝒄𝟐

𝒗
) 
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Ce qui découle du fait que dans une équation d’onde classique on a : 

 

(
𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) − (

𝟏

𝒖𝟐
) (
𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒕𝟐
) = 𝟎  

 

et ici : 

𝟏

𝒖𝟐
= (

𝒗

𝒄𝟐
)
𝟐

 => 𝒖 = (
𝒄𝟐

𝒗
) 

  

Cette équation met en évidence une onde de phase et non une onde de transport de matière ou 

d’énergie 

 

Établissement de l’équation en fonction de l’énergie 

 Nous cherchons une formulation qui est fonction de l’énergie de la particule. 

 

Pour la suite, nous dérivons l'équation d'onde  𝛹 (𝑥, 𝑡) (15) comme suit 

 

𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑡2
 

 

𝜕2 𝛹0 𝑒
i(2 𝜋 𝑓𝑡(

𝒗
𝒄𝟐
  𝒙 −𝒕))

𝜕𝑡2
 

 

𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑡2
  =   (−22 𝜋2 𝑓𝑡

2 )  𝛹(𝑥, 𝑡) 

 

 

 

Alors l’équation (15) 

 

(
𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) − (

𝒗𝟐

𝒄𝟒
) (

𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑡2
) = 0 

 

devient 

 

(
𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) − (

𝒗𝟐

𝒄𝟒
) ((−22 𝜋2 𝑓𝑡

2 )  𝛹(𝑥, 𝑡)) = 0 
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  (
𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + (𝟒 𝝅𝟐 (

𝒇𝒕
𝟐 𝒗𝟐

𝒄𝟒
)  𝜳(𝒙, 𝒕)) = 𝟎                                      (16) 

 

 

 

(
𝒇𝒕
𝟐 𝒗𝟐

𝒄𝟒
)    𝑒𝑠𝑡 𝑙𝑒 𝑡𝑒𝑟𝑚𝑒 𝑑𝑒 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒 𝑙′𝑜𝑛𝑑𝑒 

 

 

𝑓𝑡
𝑣

𝑐2
=
1

𝜆𝑑𝐵
=
𝑚𝑟 𝑣

ℎ
  𝑠𝑒𝑙𝑜𝑛 𝑙𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒 𝑑𝑒 𝐵𝑟𝑜𝑔𝑙𝑖𝑒 →  𝜆𝑑𝐵 = (

ℎ

𝑝
)   

 

𝑚𝑟 ≡ 𝑚𝑎𝑠𝑠𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑒  

 

Ce qui implique que 

 

 (
𝒇𝒕
𝟐 𝒗𝟐

𝒄𝟒
)  = (

𝑚𝑟
2 𝑣2

ℎ2
) 

 

Introduisons cette expression dans l'équation de propagation (16) 

 

(
𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) + (4 𝜋2 (

𝑚𝑟
2𝑣2

ℎ2
)  𝛹(𝑥, 𝑡)) = 0 

 

En considérant que  𝒎𝒓 =
𝑚0

(√1 − (
𝑣2

𝑐2
))

 

 

 

 

Alors  

 

(
𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) +

(

 
 
 
4 𝜋2

(

 
 𝑚0

2𝑣2

ℎ2 (√1 − (
𝑣2

𝑐2
))

2

 
)

 
 
 𝛹(𝑥, 𝑡)

)

 
 
 
= 0 

 

 

Avec ℏ ≡
h

2 π
   et  γ =   

1

√1 − (
v2

c2
)
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(
𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + ( (

𝜸𝟐𝒎𝟎
𝟐𝒗𝟐

ℏ𝟐
)  𝜳(𝒙, 𝒕)) = 𝟎                                  

 

 

Nous disposons ici d’une équation relativiste qui, cependant, se heurte à des difficultés 

d’interprétation. Nous allons donc l’étudier dans le cas où les vitesses sont très faibles devant 

celle de la lumière. Cette approximation conduit à une formulation non relativiste, mieux 

adaptée à la description des systèmes quantiques à basse énergie. 

 

𝛾 =   
1

√1 − (
𝑣2

𝑐2
)

 ≈ 1 

 

Dans les limites des vitesses non relativistes (v << c) nous pouvons simplifier l’équation comme 

suit : 

 

 

(
𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + ( (

 𝒎𝟎
𝟐𝒗𝟐

ℏ𝟐
)  𝜳(𝒙, 𝒕)) = 𝟎                                  (17) 

Dans le but d’exprimer l’équation en fonction de l’énergie et en observant que le terme 𝒎𝟎
𝟐𝒗𝟐   se 

factorise naturellement en 𝒎𝟎 𝒎𝟎𝒗
𝟐 , nous voyons qu’il est possible de modifier une partie de 

l’équation (17) ainsi  

 

𝒎𝟎
𝟐𝒗𝟐  =  𝒎𝟎 𝒎𝟎𝒗

𝟐 

 

et en multipliant par 
ℏ2

m0
 

 

Nous obtenons 

 

(
  ℏ2

   𝑚0
) (

𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) + (𝑚0𝑣

2) 𝛹(𝑥, 𝑡) = 0 

 

En sachant que  

 

𝐸𝑐𝑖𝑛é𝑡𝑖𝑞𝑢𝑒 = (
1

2
)𝑚0𝑣

2    =>  2 𝐸𝑐 = 𝑚0𝑣
2 

 

Remarque : Ceci est un point clé très important dans la démarche qui implique d’en tenir 

compte dans l’interprétation des équations qui vont suivre. 
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Nous obtenons 

 

(
 ℏ2

 𝑚0
) (

𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) +  2 𝐸𝑐   𝛹(𝑥, 𝑡) = 0 

 

Nous divisons par 2   

 

 (
 ℏ𝟐

𝟐 𝒎𝟎
) (

𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + 𝑬𝒄  𝜳(𝒙, 𝒕) = 𝟎   𝑁𝑜𝑡𝑒 ∶ 𝐸𝑐  = (

1

2
)𝑚0𝑣

2 

 

Dans les limites des vitesses non relativistes (v << c) nous pouvons simplifier l’équation comme 

suit : 

 

 

 

 

Remarque : L’équation de type Schrödinger est obtenue sans postulat quantique, mais par 

transition relativiste. 

 

Appliquons une autre transformation, connaissant que  

 

𝐸𝑡 = 𝐸𝑐 + 𝐸0  =>   𝐸𝑐 = 𝐸𝑡 − 𝐸0 

 

Énergie totale = Énergie cinétique + Énergie de masse au repos 

 

 

Opérons un changement de variables 

 

(
 ℏ2

2 𝑚0
) (

𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) + (𝐸𝑡 − 𝐸0) 𝛹(𝑥, 𝑡) = 0 

 

 

Nous distribuons  

 

(
 ℏ2

2 𝑚0
) (

𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) + 𝐸𝑡  𝛹(𝑥, 𝑡) − 𝐸0 𝛹(𝑥, 𝑡) = 0 

 

 

 

 

(
 ℏ𝟐

   𝟐 𝒎𝟎
) (

𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + 𝑬𝒄 𝜳(𝒙, 𝒕) = 𝟎                        (18) 
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Nous multiplions tout par -1 

 

−(
 ℏ2

2 𝑚0
) (

𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) − 𝐸𝑡  𝛹(𝑥, 𝑡) + 𝐸0 𝛹(𝑥, 𝑡) = 0 

 

 

Nous isolons 𝐸𝑡  𝛹(𝑥, 𝑡) 

 

−(
 ℏ2

2 𝑚0
) (

𝜕2𝛹(𝑥, 𝑡)

𝜕𝑥2
) + 𝐸0 𝛹(𝑥, 𝑡) = 𝐸𝑡  𝛹(𝑥, 𝑡) 

 

 

 

Dans les limites des vitesses non relativistes : v << c 

 

 

              (19) 

 

 

 

Cette même équation en fonction de f0 

 

−(
 𝒉 𝒄𝟐

𝟖 𝝅 𝒇𝟎
) (

𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + 𝑬𝟎 𝜳(𝒙, 𝒕) = 𝑬𝒕 𝜳(𝒙, 𝒕) 

 

Il nous reste maintenant à expliciter la dépendance temporelle  

 

Nous cherchons à exprimer l’équation en fonction de la variation du temps. Nous cherchons donc 

une expression qui comprend une dérivée par rapport au temps. 

 

L’équation recherchée, une fois dérivée doit aboutir à ce format d’équation 

 

𝐸𝑐 + 𝐸0 = 𝐸𝑡    

 

 

Pour simplifier, nous prenons le cas de la particule libre, aucune énergie potentielle (aucune force) 

ne l’affectant.  

 

En partant de  

 

𝑬 = ℎ 𝑓 =
ℎ  2 𝜋 𝑓

2 𝜋
=
ℎ 𝜔

2 𝜋
 =   ℏ 𝝎        

−(
 ℏ𝟐

𝟐 𝒎𝟎
) (

𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + 𝑬𝟎 𝜳(𝒙, 𝒕) = 𝑬𝒕 𝜳(𝒙, 𝒕) 
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Nous obtenons de (19) 

 

 

 

 

 

 

 

En premier, appliquons la dérivé par rapport à X à Ψ(x, t) (11) 

 

 

−(
ℏ2

2 𝑚0
) (

𝜕2 𝛹0  (cos(𝑘𝑑𝑏 𝑥 −  𝜔𝑡   𝑡 ) +  i sin(𝑘𝑑𝑏 𝑥 − 𝜔𝑡   𝑡 ))

𝜕𝑥2
)+ ℏ 𝜔0 𝛹(𝑥, 𝑡) = ℏ 𝜔𝑡  𝛹(𝑥, 𝑡)  

 

−(
ℏ2

2 𝑚0
) (

𝜕2 𝛹0  e
𝑖(𝑘𝑑𝑏 𝑥 − 𝜔𝑡  𝑡 )

𝜕𝑥2
)+ ℏ 𝜔0 𝛹(𝑥, 𝑡) = ℏ 𝜔𝑡  𝛹(𝑥, 𝑡)  

 

−(
ℏ2

2 𝑚0
) (𝑖 𝐾𝑑𝑏) (

𝜕  𝛹0 e
𝑖(𝑘𝑑𝑏 𝑥 − 𝜔𝑡  𝑡 )

𝜕𝑥 
)+ ℏ 𝜔0 𝛹(𝑥, 𝑡) = ℏ 𝜔𝑡  𝛹(𝑥, 𝑡)      

     

−(
ℏ2

2 𝑚0
) (𝑖 𝐾𝑑𝑏) (𝑖 𝐾𝑑𝑏)(𝛹0 𝑒

𝑖(𝑘𝑑𝑏𝑥 − 𝜔𝑡 𝑡)) + ℏ 𝜔0 𝛹(𝑥, 𝑡) = ℏ 𝜔𝑡   𝛹(𝑥, 𝑡)     

 

−(
ℏ2

2 𝑚0
) (−𝐾𝑑𝑏

2 )  𝛹(𝑥, 𝑡) + ℏ 𝜔0 𝛹(𝑥, 𝑡) = ℏ 𝜔𝑡   𝛹(𝑥, 𝑡)    

 

Divisons par Ψ(𝑥, 𝑡)    

 

(
ℏ𝟐

𝟐 𝒎𝟎
) (𝑲𝒅𝒃

𝟐 ) + ℏ 𝝎𝟎 = ℏ 𝝎𝒕                                        (21) 

 

 

Remarque : 

(
ℏ2

2 𝑚0
) (𝐾𝑑𝑏

2 ) =  ℏ 𝜔𝑡 − ℏ 𝜔0   

 

(
ℏ2

2 𝑚0
) (𝐾𝑑𝑏

2 ) =  ℏ 𝜔𝑐     𝑛𝑜𝑡𝑒 ∶ 𝜔𝑐  𝑛𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑒 

 

ℏ 𝜔𝑐    é𝑔𝑎𝑙 à  l’énergie cinétique   

  

−(
ℏ𝟐

𝟐 𝒎𝟎
) (

𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
)+ ℏ 𝝎𝟎 𝜳(𝒙, 𝒕) = ℏ 𝝎𝒕 𝜳(𝒙, 𝒕)        (20) 
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L’équation (21) est l’équation que nous devons obtenir à la suite de l’application des dérivations 

de l’équation d’onde. La partie de droite de (20) doit être le résultat d’une dérivée par rapport au 

temps. 

 

Dérivons l’équation d’onde Ψ(x, t) (11) par rapport au temps 

 

𝜕  𝛹  (𝑥, 𝑡)

𝜕𝑡 
=
𝜕  𝛹0  𝑒

𝑖(𝑘𝑑𝑏 𝑥 − 𝜔𝑡  𝑡 )

𝜕𝑡 
 = − 𝑖 𝜔𝑡 𝛹(𝑥, 𝑡)   

 

Posons 

−(
ℏ𝟐

𝟐 𝒎𝟎
)  (

𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + ℏ 𝝎𝟎  𝜳(𝒙, 𝒕) = 𝜷 

𝝏  𝜳  (𝒙, 𝒕)

𝝏𝒕 
  (22) 

 

 

ℏ 𝜔𝑐 𝛹(𝑥, 𝑡)   + ℏ 𝜔0 𝛹(𝑥, 𝑡)     = − 𝛽 𝑖 𝜔𝑡 𝛹(𝑥, 𝑡)   

 

Divisons par Ψ(𝑥, 𝑡)    

ℏ 𝜔𝑐 + ℏ 𝜔0   =  − 𝛽 𝑖 𝜔𝑡       

 

Nous voulons obtenir 

ℏ 𝜔𝑐 + ℏ 𝜔0   =  ℏ 𝜔𝑡       

 

Ce qui implique que  

  

− 𝛽 𝑖 𝜔𝑡   =  ℏ 𝜔𝑡  

Donc 

 𝛽 = −
ℏ

𝑖
 = 𝑖 ℏ  

 

 

Introduisons cette égalité dans (22) 

 

−(
ℏ2

2 𝑚0
)  (

𝜕2 𝛹(𝑥, 𝑡)

𝜕𝑥2
) + ℏ 𝜔0  𝛹(𝑥, 𝑡) = 𝑖 ℏ 

𝜕  𝛹  (𝑥, 𝑡)

𝜕𝑡 
  

 

 

𝒊 ℏ 
𝝏  𝜳 (𝐱, 𝐭)

𝝏𝒕 
 =  ℏ 𝝎𝒕 𝜳(𝐱, 𝐭)    =  𝑬𝒕 𝜳(𝒙, 𝒕) 
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L’équation dépendante de la dérivé par rapport au temps en fonction de (20) est alors 

 

 

−(
 ℏ𝟐

𝟐 𝒎𝟎
) (

𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + ℏ 𝝎𝟎  𝜳(𝒙, 𝒕) = 𝒊 ℏ 

𝝏  𝜳  (𝐱, 𝐭)

𝝏𝒕 
  

 

−(
 ℏ2

2 𝑚0
) (

𝜕2𝛹(𝑥, 𝑡)

𝜕𝑥2
) +  𝐸0  𝛹(𝑥, 𝑡) = 𝑖 ℏ 

𝜕  𝛹(x, t)

𝜕𝑡 
  

 

 

−(
 ℏ2

2 𝑚0
) (

𝜕2𝛹(𝑥, 𝑡)

𝜕𝑥2
) +𝑚0 𝑐

2  𝛹(𝑥, 𝑡) = 𝑖 ℏ 
𝜕  𝛹(x, t)

𝜕𝑡 
  

 

 

𝒊 ℏ 
𝝏  𝜳(𝐱, 𝐭)

𝝏𝒕 
=   𝑬𝟎   𝜳(𝒙, 𝒕) + [−(

 ℏ𝟐

𝟐 𝒎𝟎
) (

𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
)]                       (23) 

 

 

Rappel : (
∂2 Ψ(x,t)

∂x2
)   donne un résultat négatif 

Énergie totale = Énergie de masse au repos + Énergie cinétique 

 

Cette inclusion de l'énergie au repos E0  est inhérente à notre approche de départ, où la fréquence 

ωt de l'onde représente l'énergie totale relativiste de la particule, contrairement à l'approche 

standard de Schrödinger où la fréquence ω (sans indice) est associée à l'énergie mécanique du 

système (énergie cinétique + potentielle). Néanmoins, cela garantit une cohérence avec les 

résultats physiques de la mécanique quantique non relativiste." 

Particule soumise à un potentiel, à une force 

 
Les équations précédentes font référence à une particule libre, soumise à aucune force. Nous 
allons aborder le cas d’une particule soumise à un potentiel V unidimensionnel. Dans cette 
situation, l’équation dépendante de la position et du temps s’écrit 

 

𝒊 ℏ 
𝝏  𝜳(𝐱, 𝐭)

𝝏𝒕 
= −(

 ℏ𝟐

𝟐 𝒎𝟎
) (

𝝏𝟐 𝜳(𝒙, 𝒕)

𝝏𝒙𝟐
) + 𝑽 (𝒙, 𝒕) 𝜳(𝒙, 𝒕) + 𝑬𝟎  𝜳(𝒙, 𝒕) 

 

(24) 

 
L’énergie totale = l’énergie cinétique + l’énergie potentielle + l’énergie de masse au repos 
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Le potentiel V et la fonction d’onde 𝛹 peuvent dépendre du temps et de la position, 
V (x, t) et Ψ(x, t), l′énergie E0 est constante. 

 

 
L’équation indépendante du temps1 

 

Dans un grand nombre de situations, le potentiel ne dépend pas explicitement du temps. 
La dépendance en temps peut alors être séparée de celle en position. Posons 

 

𝛹(𝑥, 𝑡) =  𝜓(𝑥) 𝑓(𝑡)  

 

Dans ces situations, l’équation (24) s’écrit alors 

 

𝑖 ℏ 𝜓(𝑥) 
𝜕 𝑓(𝑡) 

𝜕𝑡 
= −(

 ℏ2  𝑓(𝑡) 

2 𝑚0
) (

𝜕2 𝜓(𝑥) 

𝜕𝑥2
) + 𝑉 (𝑥) 𝜓(𝑥) 𝑓(𝑡)  + 𝐸0  𝜓(𝑥) 𝑓(𝑡)   

 

 

En divisant par 𝜓(𝑥) 𝑓(𝑡) 

 

𝒊 ℏ 
𝟏

𝒇(𝒕)

𝒅 𝒇(𝒕) 

𝒅𝒕 
= −(

 ℏ𝟐

𝟐 𝒎𝟎
 
𝟏

𝝍(𝒙)
) (

𝒅𝟐 𝝍(𝒙) 

𝒅𝒙𝟐
) + 𝑽 (𝒙)  + 𝑬𝟎 

 

Le membre de gauche ne dépend que du temps et le membre de droite ne dépend que des 
coordonnées spatiales. Les dérivées partielles sont changées en dérivées ordinaires, car chaque  
membre ne dépend que d’une variable. Comme les variables peuvent varier de manière 
indépendante, chaque membre doit être égal à une même constante que nous notons B.  
 

La partie de droite est la somme de E0 qui est une constante et d’une équation selon X. Comme la 
somme est une constante et que E0 est une constante donc l’équation selon X est une constante 
(que nous notons D). 

𝑩 = 𝑫+ 𝑬𝟎 

 

Donc 

 

𝒊 ℏ
𝟏

𝒇

𝒅𝒇

𝒅𝒕
= 𝑩  

 

𝑖 ℏ
1

𝑓
 𝑑𝑓 = 𝐵 𝑑𝑡 

 

 

 
1. Thornton |Rex,  Physique moderne  (3e édition, de boek, page 205) 
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On intègre pour trouver la constante B. 

 

𝑖 ℏ ∫ (
1

𝑓
𝑑𝑓) = ∫ 𝐵 𝑑𝑡 

 

 

On calcule les deux intégrales, ce qui donne 

𝑖 ℏ ln 𝑓 = 𝐵 𝑡 + 𝐶 

Où 𝐶  est une constante d’intégration que l’on peut choisir égale à 0. Donc, 

ln 𝑓 =
𝐵 𝑡

𝑖ℏ
 

De cette équation on déduit 𝑓,  

𝑓(𝑡) = 𝑒
𝐵 𝑡
𝑖ℏ =  𝑒− 

𝑖𝐵 𝑡
ℏ     (25) 

 

𝑓(𝑡) = 𝑒
𝐷 𝑡
𝑖ℏ  𝑒

𝐸0 𝑡
𝑖ℏ =  𝑒−

𝑖 𝐷 𝑡
ℏ   𝑒−

𝑖 𝐸0 𝑡
ℏ  

Si l’on compare cette expression pour 𝑓 à la fonction d’onde de la particule libre, ayant la 

dépendance temporelle, on voit que 𝐵 = ℏ 𝜔𝑡  = 𝐸𝑡 = 𝐸𝑐+𝑝 + 𝐸0. C’est le résultat général.  

On a donc  

𝒊 ℏ
𝟏

𝒇(𝒕)

𝒅𝒇(𝒕)

𝒅𝒕
= 𝑬𝒕 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆   

 

 

−(
 ℏ2

2 𝑚0
) (

𝑑2 𝜓(𝑥) 

𝑑𝑥2
) + 𝑉 (𝑥) 𝜓(𝑥)  + 𝐸0 𝜓(𝑥) = 𝐸𝑡𝑜𝑡𝑎𝑙 𝜓(𝑥)    (26) 

 

 

−(
 ℏ2

2 𝑚0
) (

𝑑2 𝜓(𝑥) 

𝑑𝑥2
) + 𝑉 (𝑥) 𝜓(𝑥)  = 𝐸𝑡  𝜓(𝑥)  − 𝐸0 𝜓(𝑥) 

 

 

−(
 ℏ2

2 𝑚0
) (

𝑑2 𝜓(𝑥) 

𝑑𝑥2
) + 𝑉 (𝑥) 𝜓(𝑥)  = 𝐸𝑐𝑖𝑛é𝑡𝑖𝑞𝑢𝑒 𝜓(𝑥) + 𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑒𝑙  𝜓(𝑥) 

 

𝐸𝑐  (𝑥) + 𝐸𝑝(𝑥) étant l’énergie ‘’mécanique’’, pour simplifier nous allons l’identifier par 

𝐸𝑚é𝑐𝑎𝑛𝑖𝑞𝑢𝑒  𝑜𝑢 𝐸𝑚 
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−(
 ℏ𝟐

𝟐 𝒎𝟎
) (

𝒅𝟐 𝝍(𝒙) 

𝒅𝒙𝟐
) + 𝑽 (𝒙) 𝝍(𝒙) = 𝑬𝒎é𝒄𝒂𝒏𝒊𝒒𝒖𝒆 𝝍(𝒙)    (27) 

 

 

Nous retrouvons, ici, l’équation de Schrödinger indépendante du temps. C’est une équation 

fondamentale en mécanique quantique. 

L’équation précédente peut se réécrire  

 

 

𝒅𝟐 𝝍(𝒙) 

𝒅𝒙𝟐
+ [

𝟐𝒎𝟎(𝑬𝒎 − 𝑽 (𝒙))

ℏ𝟐
]𝝍(𝒙) = 𝟎 

 

   (28) 

 

Dans le cas d’une particule libre, aucun potentiel ou potentiel constant 

 

−(
 ℏ𝟐

𝟐 𝒎𝟎
) (

𝒅𝟐 𝝍(𝒙) 

𝒅𝒙𝟐
) = 𝑬𝒄 𝝍(𝒙)    (29) 

 

On peut réécrire l’équation (25) sous la forme 

𝑓(𝑡) = 𝑒
−(
𝑖 𝐸𝑡 𝑡
ℏ
)
= 𝑒−𝑖 𝜔𝑡 𝑡  

Et l’équation d’onde 𝛹(𝑥, 𝑡) devient  

𝛹(𝑥, 𝑡) =  𝜓(𝑥)  𝑒−𝑖 𝜔𝑡 𝑡  
 

Dans le cas de cette équation, où le potentiel ne dépend pas du temps, on a 

𝛹∗𝛹 = 𝜓2(𝑥)  𝑒𝑖 𝜔𝑡 𝑡 𝑒−𝑖 𝜔𝑡 𝑡  

 

𝜳∗𝜳 = 𝝍𝟐(𝒙) 

 

Les distributions de probabilité (données importantes en mécanique quantique que nous ne 

détaillerons pas dans ce document) sont constantes au cours du temps. En mécanique quantique, 

on dit que le système est dans un état stationnaire. 
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Exercice 11  

Considérons un métal dans lequel les électrons sont libres, le potentiel étant nul. Quelle forme 

mathématique prend la fonction d’onde 𝜓(𝑥) ? 

Résolution de l’équation (26), l’équation indépendante du temps. V(x) =0, il faut résoudre 

l’équation différentielle sur 𝜓(𝑥). 

 

−(
 ℏ2

2 𝑚0
) (

𝑑2 𝜓(𝑥) 

𝑑𝑥2
) + 𝑉 (𝑥) 𝜓(𝑥) + 𝐸0 𝜓(𝑥) = 𝐸𝑡𝑜𝑡𝑎𝑙 𝜓(𝑥) 

 

−(
 ℏ2

2 𝑚0
) (

𝑑2 𝜓(𝑥) 

𝑑𝑥2
) + 𝐸0 𝜓(𝑥) = 𝐸𝑡𝑜𝑡𝑎𝑙 𝜓(𝑥) 

 

−(
 ℏ2

2 𝑚0
) (

𝑑2 𝜓(𝑥) 

𝑑𝑥2
) = 𝐸𝑡𝑜𝑡𝑎𝑙  𝜓(𝑥) − 𝐸0 𝜓(𝑥) 

 

 

−(
 ℏ2

2 𝑚0
) (

𝑑2 𝜓(𝑥) 

𝑑𝑥2
) = 𝐸𝑐𝑖𝑛é𝑡𝑖𝑞𝑢𝑒 𝜓(𝑥) 

 

 
𝑑2 𝜓(𝑥)

𝑑𝑥2
= −

2𝑚0 𝐸𝑐
ℏ2

   𝜓(𝑥)   =  −𝑘𝑑𝐵
2  𝜓(𝑥)   

 

On n’écrit plus explicitement la dépendance en x de 𝜓(𝑥) et on réécrit cette expression sous la 

forme 

𝑑2𝜓

𝑑𝑥2
= −

2𝑚0 𝐸𝑐
ℏ2

𝜓   =  −𝑘𝑑𝐵
2  𝜓   

 

 

 

 

 

 

 

 

 

 
1. Thornton |Rex,  Physique moderne  (3e édition, de boek, page 207, Exemple 6.5) 
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Limite du modèle de l’oscillateur harmonique 

Toutefois, un point subtil réside dans l’usage du formalisme relativiste pour définir une onde de 

matière plane : on considère une onde monochromatique de portée infinie, ce qui est un outil 

mathématique idéal plutôt qu’une situation physique réalisable (une particule libre réelle devrait 

être représentée par un paquet d’ondes normalisable). Ce choix d’onde plane simplifie 

grandement les mathématiques, mais il constitue un cas très particulier. En particulier, cela omet 

la question de la localisation de la particule et limite la portée de la déduction aux ondes 

stationnaires étendues, sans aborder comment une superposition pourrait conduire à une 

particule localisée. 

Pour remédier à cette non-localisation, la construction d'un paquet d'ondes normalisable par 

superposition linéaire d'ondes planes avec des coefficients appropriés serait une solution. 

Pourquoi normaliser la fonction d’onde ? 

En mécanique quantique, la fonction d’onde Ψ(𝑥) contient toute l’information sur l’état 

d’une particule. Cependant, |Ψ(𝑥)|2 n’a de sens physique que s’il représente une densité 

de probabilité : |Ψ(𝑥)|2  𝑑𝑥 donne la probabilité de trouver la particule entre 𝑥 et 𝑥 + 𝑑𝑥 

Pour que cette interprétation soit valide, la somme (ou l’intégrale) de toutes les 

probabilités sur l’espace doit être égale à 1, c’est-à-dire que la particule doit se trouver 

quelque part avec certitude. 

Condition de normalisation : 

∫ |Ψ(𝑥)|2
+∞

−∞

 𝑑𝑥 = 1 

Seules les fonctions d’onde normalisables (pour lesquelles l’intégrale ci-dessus converge) 

décrivent des états physiques possibles. 

 

Modèle de l’oscillateur anharmonique 

Lorsqu'on prend en compte la dépendance relativiste de l’inertie, caractérisée par l’accroissement 

du facteur 

𝜸 =
𝟏

√(𝟏 −
𝑽𝟐

𝒄𝟐
)

 

avec la vitesse de la particule, le système oscillant n’obéit plus à une dynamique linéaire. 

L’équation du mouvement devient non linéaire, du fait que la masse effective varie au cours de 

l’oscillation. Il en résulte un comportement anharmonique, dans lequel la fréquence propre du 

système dépend de l’amplitude, rompant la symétrie temporelle caractéristique de l’oscillateur 

harmonique. 
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Dans la mesure où le mouvement reste périodique, il est néanmoins possible de lui associer une 

décomposition en série de Fourier. Cette décomposition permet de représenter le signal 

temporel de l’oscillateur anharmonique comme une superposition d’oscillations harmoniques, 

chacune correspondant à une composante fréquentielle définie. Il s’agit ici d’une représentation 

mathématique du contenu spectral du système, et non d’une subdivision physique en 

oscillateurs indépendants. 

En attribuant à chaque mode harmonique une onde plane associée, via les relations de de Broglie  

𝐸𝑡 = ℏ 𝜔𝑡        𝑝 = ℏ 𝑘    

 

cette superposition donne lieu à un paquet d’ondes. La vitesse de groupe de ce paquet, définie  

𝑣𝑔𝑟𝑜𝑢𝑝𝑒 =
𝜕𝜔𝑡
𝜕𝑘𝑑𝐵

 

 

coïncide avec la vitesse de la particule dans le cadre de la relation de dispersion relativiste. Ce fait 

assure la cohérence du modèle ondulatoire, dans lequel la dynamique du corpuscule est 

représentée par la propagation d’une enveloppe ondulatoire. 

Ce cadre de description justifie alors, dans les limites considérées, l’usage du paquet d’ondes 

comme modélisation de la particule massive relativiste. Il établit un lien entre l’anharmonicité 

induite par les effets relativistes et la représentation ondulatoire de la matière, en s’appuyant sur 

la structure fréquentielle intrinsèque du mouvement. 

 

Développement mathématique de l'idée d'oscillateur anharmonique et de sa 

représentation en paquet d'ondes 

Oscillateur relativiste (inertie variable) 

En relativité restreinte, la masse invariante m0 reste constante, mais l'inertie augmente avec la 

vitesse via le facteur de Lorentz : 

 

𝛾 =
1

√(1 −
𝑉2

𝑐2
)

 

 

L’impulsion devient : 

𝑝 = 𝛾 𝑚0 𝑥̇ 
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L’équation du mouvement s’écrit : 

(
𝑑

𝑑𝑡
) (𝛾 𝑚0 𝑥̇) + 𝐾𝑥 = 0 

Développons : 

𝛾 =
1

√(1 −
𝑥̇2

𝑐2
)

 

 

(
𝑑

𝑑𝑡
)

(

 
𝑚0𝑥̇

√(1 −
𝑥̇2

𝑐2
)
)

 + 𝐾𝑥 = 0 

 

 

C’est une équation non linéaire et non analytique (due à la racine), donc le mouvement n’est plus 

sinusoïdal. C’est un oscillateur anharmonique relativiste. Le terme d’inertie dépend de 𝑥̇. 

 

Comportement non harmonique et spectre en fréquences 

Un tel oscillateur ne produit pas une fréquence unique. Au lieu d’une oscillation à une seule 

fréquence ω, on obtient un spectre de fréquences. 

Si l’on suppose que le mouvement reste périodique (cas borné), on peut le décomposer en série 

de Fourier : 

𝑥(𝑡) = ∑𝐴𝑛 cos(𝑛𝜔0𝑡 + 𝜙𝑛)

∞

𝑛=1

 

ou, sous forme complexe : 

𝑥(𝑡) = ∑ 𝑐𝑛e
inω0t

∞

𝑛=−∞

 

 

Chaque terme représente une oscillation harmonique de fréquence nω0. L’oscillateur 

anharmonique est donc mathématiquement équivalent à une somme d’oscillateurs 

harmoniques. 
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Représentation spatiale : onde plane associée à chaque harmonique 

Dans la décomposition en série de Fourier d’un signal strictement périodique de fréquence 

fondamentale ω₀, chaque harmonique porte une fréquence 

𝜔𝑛 = 𝑛𝜔0, 

avec  𝑛 ∈  ℤ. Autrement dit, on retrouve la fondamentale (𝑛 = 1) puis ses harmoniques (𝑛 = 2 

double, 𝑛 = 3 triple, etc.). 

En pratique, pour un oscillateur anharmonique relativiste borné et périodique, la non-linéarité 

introduit bien ces multiples entiers de la fréquence fondamentale ω₀ dans le spectre 

À chaque fréquence ωn = nω0. , on associe une onde plane (type de Broglie) : 

𝜓𝑛(𝑥,𝑡) = 𝐴𝑛𝑒
𝑖(𝑘𝑛𝑥−𝜔𝑛 𝑡) 

avec : 

𝑘𝑛 =
𝑝𝑛
ℏ
  et  𝜔𝑛 =

𝐸𝑛
ℏ

 

𝑘𝑛  est le nombre d’ondes qui dépend de la vitesse de la particule dans le référentiel du 

laboratoire. 

 

On construit alors un paquet d’ondes : 

𝜓(𝑥, 𝑡) =∑𝐴𝑛𝑒
𝑖(𝑘𝑛𝑥−𝜔𝑛 𝑡)

𝑛

 

ou en continu (si le spectre est dense) : 

𝜓(𝑥, 𝑡) =   ∫ 𝐴(𝑘) 𝑒𝑖(𝑘𝑥−𝜔(𝑘)𝑡)
∞

−∞

 𝑑𝑘 

C’est exclusivement la dépendance relativiste de l’inertie (facteur γ) qui brise l’harmonicité : 

l’anharmonicité observée découle uniquement des effets de la relativité restreinte, et non d’une 

modification du potentiel. 

Vitesse de groupe et propagation 

La vitesse de groupe vg du paquet d’ondes est : 

𝑣𝑔 =
𝑑𝜔𝑡
𝑑𝑘𝑑𝐵

 

Pour que le paquet d’ondes décrive correctement la particule, il faut que vg = vparticule.   

Par exemple, pour une particule libre avec la relation de dispersion relativiste : 
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𝜔𝑡(𝑘𝑑𝐵) =
1

ℏ
 √ (ℏ𝑘𝑑𝐵𝑐)

2 +𝑚2𝑐
2    

 

alors : 

𝑣𝑔 =
𝑑𝜔𝑡
𝑑𝑘𝑑𝐵

=
ℏ𝑘𝑑𝐵𝑐

√ (ℏ𝑘𝑑𝐵𝑐)
2 +𝑚2𝑐

2 
=
𝑝𝑐2

𝐸𝑡
= 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑒  

 

La vitesse de groupe est bien la vitesse de la particule, ce qui justifie pleinement l’identification de 

la trajectoire de la particule avec l’enveloppe du paquet d’ondes. 

 

Conclusion du développement mathématique 

• La prise en compte de la relativité rend l’oscillateur anharmonique, via la dépendance de 

la masse effective à la vitesse. 

• Toute fonction périodique (ici, le mouvement non sinusoïdal) peut être décomposée en 

série de Fourier : la dynamique est décrite comme une superposition d’oscillateurs 

harmoniques. 

• Chaque composante harmonique peut être associée à une onde plane, permettant une 

représentation ondulatoire complète. 

• La somme de ces ondes forme un paquet d’ondes, dont la vitesse de groupe est égale à la 

vitesse de la particule. 

Mathématiquement, le modèle d’un oscillateur relativiste fournit donc une base robuste à la 

représentation par paquet d’ondes d’une particule massive. 

De manière générale, tout modèle d’oscillateur anharmonique offre une base tout aussi solide à 

cette représentation. 

Paquet d’onde1 

 

 
 

Pour un paquet d’ondes, nous retrouvons une vitesse de phase et une vitesse de groupe. 
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La vitesse des crêtes de l’onde, appelée la vitesse de phase, est donnée par 
 

𝑣𝑝ℎ𝑎𝑠𝑒 =
𝜔𝑡𝑜𝑡𝑎𝑙𝑒
𝑘𝑑𝐵

        𝜔 𝑡𝑜𝑡𝑎𝑙𝑒 = 𝜔 𝑐𝑖𝑛é𝑡𝑖𝑞𝑢𝑒 + 𝜔 𝑑𝑒 𝑚𝑎𝑠𝑠𝑒 

 
Alors que la vitesse de l’enveloppe, appelée la vitesse de groupe, est donnée par 
 

𝑣𝑔𝑟𝑜𝑢𝑝𝑒 =
𝜕𝜔𝑡
𝜕𝑘𝑑𝐵

 

Ici, pour notre onde, on a 
 

𝐸𝑡 = ℏ 𝜔𝑡        

𝑝 = ℏ 𝑘𝑑𝐵        

 
1.  Luc Tremblay, Application de E = hf à des particules massives :  http://physique.merici.ca/ondes/preuve-Ehf.pdf 

Puisque 
 

𝐸𝑡 = √𝑚0
2𝑐4 + 𝑝2𝑐2       

 
On a 

ℏ 𝜔𝑡 = √𝑚0
2𝑐4 + ℏ2 𝑘𝑑𝑏

2 𝑐2       

 

𝜔𝑡 =

(√𝑚0
2𝑐4 + ℏ2 𝑘𝑑𝑏

2 𝑐2)

ℏ
    

 

 
 

Ainsi, la vitesse de groupe est 
 

𝑣𝑔 =
𝜕𝜔𝑡
𝜕𝑘𝑑𝐵

 

 

= (
1

ℏ
) (
1

2
)

(

 
 1

(√𝑚0
2𝑐4 + ℏ2 𝑘𝑑𝑏

2  𝑐2)
)

 
 
2𝑘ℏ2𝑐2     

 

=

(

 
 𝑘𝑑𝑏 ℏ𝑐

2 

(√𝑚0
2𝑐4 + ℏ2 𝑘𝑑𝑏

2 𝑐2)
)

 
 

 

 

http://physique.merici.ca/ondes/preuve-Ehf.pdf
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=
𝑝𝑐2 

𝐸𝑡
 

 

=
𝛾 𝑚0𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑒 𝑐

2 

𝛾 𝑚0𝑐
2

 

 

𝑣𝑔 = 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑒 

 

 
La vitesse de groupe est donc égale à la vitesse de la particule. 
 
 
 
 
 
La vitesse de phase est 

𝑣𝑝ℎ𝑎𝑠𝑒 =
𝜔𝑡
𝑘𝑑𝑏

 

 

=

𝐸𝑡
ℏ
𝑝
ℏ

 

 

=
𝐸𝑡
𝑝

 

 

=
𝛾 𝑚0𝑐

2 

𝛾 𝑚0𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑒
 

 

𝑣𝑝ℎ𝑎𝑠𝑒 =
𝑐2 

𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑒
 

 

 

 

Notez qu’on a alors le résultat intéressant 
 

𝑣𝑔 𝑣𝑝ℎ = 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑒  (
𝑐2

𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑒
) 

 
𝑣𝑔 𝑣𝑝ℎ = 𝑐

2 

 
 
Puisque la vitesse de la particule est toujours inférieure à la vitesse de la lumière, la vitesse de 
phase est toujours plus grande que la vitesse de la lumière ! 
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Une particule se déplace sous le format d’un paquet d’ondes dont la vitesse de la particule est la 

vitesse de groupe de ce paquet d’ondes. 

 

Position de la particule et probabilité 
En raison de sa nature mathématique, l'onde prend des valeurs complexes, avec une partie réelle 

et une partie imaginaire. Il est donc plus approprié de parler de « fonction d'onde » plutôt que 

« d'onde » pour désigner cette entité mathématique. 

La fonction d’onde Ψ (x,t) comporte l’unité imaginaire 𝑖 =  √−1 qui est un outil formel sans réalité 

physique. Bien que la fonction d'onde elle-même ne soit pas directement mesurable, le carré de son 

module | Ψ |² = Ψ *  Ψ (où Ψ * est le complexe conjugué) revêt une existence concrète et mesurable 

dans le monde physique. 

Par analogie aux ondes lumineuses, dans l’expérience des deux fentes de Young, un lien est fait 

entre le carré du module de l’onde et l’intensité en un point de l’écran. Plus l’intensité est élevée en 

un endroit plus il y a de chance de détecter une particule. De ce fait, la probabilité de présence d’une 

particule est proportionnelle à l’intensité à un endroit déterminé, donc proportionnel au carré du 

module de l’onde. Le module au carré est toujours réel et positif, ce qui est indispensable pour une 

probabilité.  

Plus spécifiquement | Ψ |² donne la densité de probabilité. La probabilité au sens strict est un 

nombre compris entre 0 et 1 qui mesure la chance qu’un événement se produise. Ce nombre est 

multiplié par 100 pour obtenir le pourcentage de chance. 

Formellement : 

Si P désigne la probabilité de trouver la particule dans l’intervalle [a, b], alors : 

𝑃 = ∫ 𝜌(𝑥) 𝑑𝑥
𝑏

𝑎

  

où ρ(x) est la densité de probabilité. 

La probabilité de trouver la particule dans [a,b] s’obtient en intégrant | Ψ |² sur cet intervalle. 

𝑃 = ∫ |Ψ(𝑥, 𝑡)|² 𝑑𝑥
𝑏

𝑎

  

Pour que cette interprétation soit valide, la somme (ou l’intégrale) de toutes les probabilités sur 

l’espace doit être égale à 1, c’est-à-dire que la particule doit se trouver quelque part avec 

certitude. 

Condition de normalisation : 

∫ |Ψ(𝑥, 𝑡)|2
+∞

−∞

 𝑑𝑥 = 1 
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Simulation de la probabilité de présence d’une particule (à 0 :13) 

 

Voir Annexe B (Mécanique quantité et probabilité) 

Voir annexe C (Pourquoi le fait d’élever au carré la fonction d’onde aboutit à une probabilité ?) 

 

 

https://www.youtube.com/watch?v=Xj9PdeY64rA&list=PLrfG_Hi1Epg4OPqfel-rwlQlT-kKMARIV&index=150
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Principe d’incertitude 
 

Il découle que la probabilité de détecter une particule dans une région donnée de l’espace dépend 

directement de la forme de la fonction d’onde. Une onde plane, caractérisée par une seule valeur 

de k (vecteur d’onde), est étendue sur tout l’espace et ne permet pas de localiser la particule avec 

précision. En revanche, un paquet d’ondes, constitué de la superposition de plusieurs ondes de 

nombres d’onde k différents, permet de concentrer la probabilité de présence dans une zone 

restreinte. Plus les composantes de l’onde sont regroupées, plus la localisation de la particule est 

précise. La précision de la position dans l’espace est inversement proportionnelle à la précision sur 

le vecteur d’onde (quantité de mouvement). Pour localiser l’enveloppe dans x, il faut additionner 

beaucoup de porteuses de k différents afin que leurs phases s’annulent partout… sauf dans un 

domaine court. 

 

 

Source : https://commons.wikimedia.org/w/index.php?curid=4837114 

Vues des fonctions d'onde décrivant la position (x0) ou la quantité de mouvement (k0) de (a) une 

onde pure (b) un paquet d'ondes et (c) un corpuscule parfaitement localisé. L'onde étant de 

fréquence pure, son énergie est parfaitement définie, mais elle n'est pas localisée dans l'espace. 

Inversement, le corpuscule est parfaitement localisé, mais n'a pas de fréquence déterminée. Le 

cas général est celui du paquet d'ondes qui est distribué en fréquence comme en espace. Du fait 

de l'équivalence mathématique entre ces deux représentations, l'étalement spatial est 

inversement proportionnel à l'étalement de l’impulsion 

 

https://commons.wikimedia.org/w/index.php?curid=4837114
https://fr.wikipedia.org/wiki/Fonction_d%27onde
https://fr.wikipedia.org/wiki/Quantit%C3%A9_de_mouvement
https://fr.wikipedia.org/wiki/Paquet_d%27onde
https://fr.wikipedia.org/wiki/Corpuscule
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Paquet d’ondes et spectre 

• Notre particule est décrite par une fonction d’onde Ψ(𝑥) 

• Pour connaître ses composantes d’impulsion, on fait la transformée de Fourier Φ(𝑘) 

• La largeur (dispersion) de |Ψ(𝑥)|2 mesure Δ𝑥 et celle de  |Φ(𝑘)|2 mesure Δ𝑝. 

Inversion de Fourier 

• Mathématiquement, plus Ψ(𝑥) est concentrée (petit Δ𝑥), plus sa transformée Φ(𝑘) est 

étalée (grand Δ𝑝), et inversement. 

• C’est un théorème de l’analyse de Fourier : on ne peut pas à la fois avoir une fonction et 

sa transformée toutes deux très concentrées. 

 

Δ𝑥  et Δ𝑝 sont les écarts-types (variances) de la position et de l’impulsion pour la fonction d’onde 

Ψ(𝑥) 

L’incertitude est une propriété fondamentale de la nature, et non une limite expérimentale et 

n’est pas dû à une perturbation lors de la mesure. 

Dû à cette propriété fondamentale de la nature, il est impossible de connaître simultanément et 

exactement la position et l’impulsion ou la vitesse d’une particule. Notons que le terme 

« indétermination » serait plus approprié que « incertitude », car il reflète mieux la nature 

intrinsèque de cette limitation ; cependant, pour des raisons historiques, c’est le terme 

« incertitude » qui s’est imposé dans la littérature scientifique. 
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Relation d'incertitude de Heisenberg pour une particule libre (vidéo) 

Pour le simulateur : https://www.icp.universite-paris-saclay.fr/introduction-a-la-theorie-

quantique/ 

 

Pour modéliser le paquet d’ondes en mécanique quantique on réfère couramment à 

une gaussienne.  

 

Plusieurs raisons poussent à choisir une forme gaussienne pour la fonction d’onde en mécanique 

quantique, notamment : 

1. Inégalité d’incertitude optimale 

La gaussienne est la seule forme de paquet d’ondes qui sature exactement l’inégalité de 

Heisenberg 

𝛥𝑥 𝛥𝑘 = 1/2  

En d’autres termes, pour une gaussienne, l’incertitude sur la position et celle sur le nombre d’onde 

(ou la quantité de mouvement) sont réparties de façon optimale : on ne peut pas faire mieux. 

 

https://www.youtube.com/watch?v=6OU-RZRNkko
https://www.icp.universite-paris-saclay.fr/introduction-a-la-theorie-quantique/
https://www.icp.universite-paris-saclay.fr/introduction-a-la-theorie-quantique/
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2. Transformée de Fourier simple 

La transformée de Fourier d’une gaussienne est elle-même une gaussienne. 

𝜓(𝑥) ∝
−
𝑥2

4𝜎2 ⟺𝜙(𝑘) ∝ 𝑒− 𝜎
2 𝑘2 . 

 

Cette propriété facilite grandement les calculs, notamment pour passer du domaine de l’espace au 

domaine des impulsions. 

3. Évolution temporelle analytique 

Sous l’hamiltonien de particule libre, un paquet gaussien reste gaussien à tout instant, 

simplement avec un étalement (σ(t)) qui s’élargit de façon connue. Cela permet de suivre 

exactement la dispersion du paquet d’ondes sans recourir à des approximations 

numériques lourdes. 

4. Représentation de paquets localisés 

Physiquement, une particule réellement localisée ne peut pas être décrite par une onde 

plane infinie. Un paquet gaussien modélise un état « quasi-localisé » et permet d’étudier 

la propagation et la diffusion spatiale d’une particule libérée ou confinée. 

5. Lien avec l’oscillateur harmonique 

Les fonctions propres de l’oscillateur harmonique quantique sont des polynômes de 

Hermite fois une enveloppe gaussienne. Autrement dit, la gaussienne est la base naturelle 

du cas quadratique, ce qui simplifie l’étude de petits mouvements autour d’un minimum 

de potentiel. 

6. Simplicité mathématique et symétrie 

La forme exponentielle en −x2 est symétrique, lisse, et ne présente pas de discontinuités ni 

de coins. Elle est donc très commode pour des manipulations analytiques et pour assurer 

que la fonction d’onde et ses dérivées sont partout bien définies. 

En résumé, la gaussienne offre un compromis idéal entre localisation spatiale, contrôle minimal 

de l’incertitude, et facilité de calcul aussi bien en espace qu’en impulsion. C’est pourquoi elle 

constitue souvent le « paquet d’ondes de choix » pour illustrer et étudier de nombreux 

phénomènes en mécanique quantique. 

Voir l’annexe D (Fonction d’onde gaussienne et principe d’incertitude) 

La formule d’Heisenberg pour le principe d’incertitude se déduit de la relation suivante : 

𝛥𝑥 𝛥𝑘 = 1/2  

Or, comme : 

𝑝 = ℏ 𝑘𝑑𝐵  ⟹ 𝑘𝑑𝐵 = 𝑝/ℏ   
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En substituant dans l’inégalité précédente, on obtient : 

𝛥𝑥 𝛥 (
𝑝

ℏ
) =

1

2
  ⟹  𝛥𝑥  (

𝛥𝑝

ℏ
) =

1

2
⟹ 𝛥𝑥 𝛥𝑝 =

ℏ

2
 

Cette valeur ℏ/2 représente la borne inférieure théorique : en pratique, on peut observer 

𝛥𝑥 𝛥𝑝 > ℏ/2  

 

La forme générale du principe d’incertitude s’écrit donc : 

 

𝛥𝑥 𝛥𝑝 ≥ ℏ/2  

 

  

Le paquet d'ondes d'une particule n'est pas obligatoirement une gaussienne 

 

Tout état quantique localisé peut se construire comme une superposition d’ondes planes, et la 

forme de l’enveloppe spatiale peut être n’importe quelle fonction carrément intégrable (à 

condition qu’elle soit normalisable). La gaussienne est simplement la plus commode et “optimale” 

(sature l’inégalité d’incertitude, reste gaussienne sous dispersion…), mais on rencontre aussi : 

• Paquet rectangulaire 

• Paquet de Lorentz 

• Paquet “chapeau mexicain” ou combinaisons de gaussiennes 

Chaque forme a ses avantages et inconvénients : 

• Rectangulaire/sinc : localisation « compacte » en espace, mais spectre à lobes latéraux, 

plus difficile à maîtriser. 

• Lorentzienne : spectre simple (exponentiel), mais queue spatiale longue (moins localisée). 

• Gaussienne : le juste milieu, pas de lobes secondaires, spectre simple, évolution 

analytique. 

En pratique, on choisit la forme du paquet d’ondes selon le problème physique (confinement dans 

un puits, diffusion, formes initiales expérimentales, etc.) 
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La fonction d’onde et l’atome d’hydrogène 

 

Dans l’atome d’hydrogène, composé d’un proton et d’un électron, la fonction d’onde fournit 

l’approche mathématique pour comprendre le comportement le l’électron autour du proton.  

Les positions possibles de l’électron sont liées aux ondes stationnaires qui découlent de la fonction 

d’onde. Rappel : ces ondes ne sont pas réelles, mais imaginaires (fonction complexe). Elles 

découlent des artifices mathématiques émis au départ. Seul le passage aux probabilités de 

présence apporte une information réelle sur la position de l’électron. La quantité qui a un sens 

physique direct est la densité de probabilité de présence, obtenue en calculant le carré du 

module de la fonction d'onde, ∣Ψ∣2. Item que nous aborderons plus loin.  

Le potentiel de Coulomb autour du proton a une symétrie sphérique, car il dépend que de la 

distance entre les deux particules chargées. Nous pouvons considérer le potentiel coulombien 

comme une «sphère» 3D à surface équipotentielle.  Il s’agit d’une symétrie sphérique du 

potentiel et non d’une surface rigide. Les ondes stationnaires seront contraintes de s’établirent 

dans cette espace ℝ³ à symétrie sphérique. 

• Une onde stationnaire classique (comme sur une corde ou une membrane plane) est une 

vibration où certains points restent fixes (nœuds) et d'autres oscillent avec une amplitude 

maximale (ventres). 

• Sur une sphère, les modes propres d’oscillation (formes de vibration naturelles) prennent 

la forme d’harmoniques sphériques : ce sont des motifs stationnaires qui présentent des 

zones nodales (où la fonction s’annule) et des zones de ventres, répartis selon la 

géométrie sphérique 

• Mathématiquement, les harmoniques sphériques sont les fonctions propres du laplacien 

sur la sphère, et toute vibration stationnaire de la surface d’une sphère peut être 

décomposée en une somme d’harmoniques sphériques, exactement comme toute onde 

stationnaire sur une corde peut être décomposée en modes sinusoïdaux 

• Physiquement, cela signifie que les harmoniques sphériques sont les motifs d’onde 

stationnaire possibles sur une sphère, chacun caractérisé par un nombre de nœuds selon 

la latitude et la longitude 

• Les harmoniques sphériques sont bien l’équivalent des ondes stationnaires, mais adaptées 

à la surface d’une sphère, avec des motifs nodaux spécifiques à cette géométrie 
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Plus spécifiquement, l’état quantique de l’électron est décrit par une fonction d’onde complexe 

Ψ(r, θ, φ), solution de l’équation de Schrödinger indépendante du temps : 

− (
ħ2

(2 𝜇)
)𝛥𝛹(𝑟, 𝜃, 𝜑)  +   𝑉(𝑟)𝛹(𝑟, 𝜃, 𝜑)  =   𝐸  𝛹(𝑟, 𝜃, 𝜑)  

avec 

• ħ (h-bar) le réel de Planck réduit, 

• 
1

𝜇
 masse réduite. Tiens compte de la masse du proton et de la masse de l’électron. Le 

proton n'est pas infiniment lourd, le système tourne autour d'un centre de masse 

commun, 

1

𝜇
=
1

𝑚𝑝
+
1

𝑚𝑒
  ≈  

1

𝑚𝑒
   

• Δ le laplacien, 

• V(r) =  − 
𝑒2

(4 𝜋 𝜀₀ 𝑟)
  le potentiel coulombien à symétrie sphérique, 

• E l’énergie de l’état stationnaire. 

Séparation des variables 

En coordonnées sphériques (r, θ, φ), on pose : 

𝛹𝑛ℓ𝑚(𝑟, 𝜃, 𝜙) = 𝑅𝑛ℓ(𝑟) 𝑌ℓ
𝑚 (𝜃, 𝜙), 

• 𝑹𝒏𝓵(𝒓) défini par des polynômes de Laguerre généralisés, dont les zéros radiaux 

correspondent aux « nœuds » dans la direction 𝒓. 

• 𝒀𝓵
𝒎 (𝜽,𝝓), sont les harmoniques sphériques, fonctions propres du laplacien angulaire sur 

la sphère 𝑆², satisfaisant 

Δ𝑆2 𝑌ℓ
𝑚 = −ℓ(ℓ + 1) 𝑌ℓ

𝑚. 

 

Les indices quantiques (𝑛, ℓ, 𝑚) déterminent respectivement : 

• 𝒏 : nombre de nœuds radiaux + 1 (niveau principal), 

o (nombre quantique principal) ( 𝒏 ∈ ℕ∗ ) : Il détermine principalement le niveau 

d'énergie de l'électron. Il est aussi lié à la taille moyenne de l'orbitale. Le nombre 

de nœuds total de la fonction d'onde est 𝑛−1.  
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• 𝓵 : nombre de zones nodales selon la latitude 

(nombre quantique azimutal) ( 𝓵 ∈ ℕ ) : Il détermine la forme globale de l'orbitale 

(le nombre de surfaces nodales qui passent par le noyau) et est souvent associé 

aux lettres s, p, d, f...  

• l=0 (orbitale s) : Forme sphérique, aucun nœud angulaire. 

• l=1 (orbitales p) : Forme de "lobe", un plan nodal. 

• l=2 (orbitales d) : Formes plus complexes, deux plans nodaux. 

 

• 𝒎 : projection angulaire (nombre de zones nodales selon la longitude). 

o (nombre quantique magnétique) (-ℓ ≤ 𝒎 ≤ ℓ): Il détermine l'orientation de 

l'orbitale dans l'espace. Plus précisément, il est lié à la projection du moment 

cinétique sur un axe (généralement z). La valeur absolue ∣ 𝑚 ∣ correspond au 

nombre de nœuds angulaires qui contiennent l'axe z (comme des plans méridiens 

ou "de longitude"). 

Densité de probabilité 

La quantité physiquement mesurable est la densité de probabilité : 

𝜌(𝑟, 𝜃, 𝜑)   =   |𝛹𝑛ℓ𝑚 (𝑟, 𝜃, 𝜑)|²   

et la probabilité de trouver l’électron dans le volume élémentaire 𝑑3𝑟 autour du point (𝑟, 𝜃, 𝜑) est 

𝑃 =∣ 𝛹(𝑟, 𝜃, 𝜑) ∣2 𝑑3𝑟. 

Quantification des niveaux d’énergie 

Les conditions aux limites (régularité en 𝑟 =  0 et décroissance à l’infini) n’admettent que des 

valeurs d’énergie discrètes, 

𝐸ₙ =
𝜇 𝑒4

2(4𝜋𝜀0)
2 ħ2𝑛2

 

correspondant aux seules ondes stationnaires admissibles. Exemple : La valeur numérique de E₁ ≃ 

−13,6 eV. 

Ainsi, la mécanique quantique de l’atome d’hydrogène apparaît comme la description d’ondes 

stationnaires complexes, où seules les configurations satisfaisant les conditions physiques et 

géométriques du problème produisent des niveaux d’énergie et des densités de probabilité bien 

définis. 
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Les résultats obtenus pour l’atome d’hydrogène à partir de l’équation de Shrödinger a permis le 

bien-fondé de cette équation. 

 

Image pour les harmoniques sphériques réelles . 

By Зефр - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=85303448 

 

Simulateur : Fonction d’ondes de l’atome d’hydrogène 

 

Lecture suggérée pour plus de détails :  

Thornton |Rex,  Physique moderne  (3e édition, de boek, chapitre 7) 

 

  

https://commons.wikimedia.org/w/index.php?curid=85303448
https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/divers/hydrogene.html
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CONCLUSION 

Ce document a proposé une construction pédagogique de l’équation de Schrödinger fondée sur 

une articulation rigoureuse entre relativité restreinte, oscillation harmonique et mécanique 

ondulatoire. En modélisant une particule au repos comme un oscillateur harmonique abstrait, 

nous avons montré comment les effets relativistes transforment cette oscillation en onde 

progressive, conduisant à une représentation complète par la fonction d’onde. 

Le quadrivecteur fréquences/vecteurs d’onde a joué un rôle central, permettant de relier 

naturellement l’énergie, la fréquence, l’impulsion et la longueur d’onde. Cette approche a mené, 

sans postulat quantique arbitraire, à l’équation de Schrödinger — dans ses formes dépendante et 

indépendante du temps — comme conséquence d’une transition relativiste cohérente. 

L’interprétation probabiliste de la fonction d’onde, essentielle à la mécanique quantique, est ici 

replacée dans un cadre dynamique : la densité de probabilité devient l’expression naturelle de la 

localisation partielle d’un paquet d’ondes. C’est dans ce contexte qu’émerge le principe 

d’incertitude, non comme une limitation mystérieuse, mais comme une conséquence directe de la 

périodicité et de la superposition des ondes. La contrainte 𝛥𝑥 𝛥𝑝 ≥ ℏ/2  résulte alors de la 

structure même des paquets d’ondes, soulignant l’impossibilité de localiser parfaitement une 

particule sans en altérer la composante impulsionnelle. 

Cette démarche offre également une base solide pour la compréhension des systèmes liés. En 

particulier, l’atome d’hydrogène constitue un exemple fondamental où l’équation de Schrödinger, 

appliquée à un potentiel coulombien central, permet de retrouver avec une précision remarquable 

les niveaux d’énergie quantifiés observés expérimentalement. L’apparition des nombres 

quantiques, des orbitales et des harmoniques sphériques découle directement de la résolution de 

cette équation en coordonnées sphériques — justifiant l’approche ondulatoire comme description 

fidèle de la structure atomique. 

Enfin, en généralisant à l’oscillateur anharmonique relativiste, on montre que même lorsque la 

dynamique devient non linéaire, une description ondulatoire reste possible via la construction de 

paquets d’ondes associés à chaque mode harmonique. La cohérence entre vitesse de groupe et 

vitesse de la particule renforce alors la validité de cette modélisation. 

Cette perspective ne prétend pas se substituer à la formulation canonique de la mécanique 

quantique, mais elle en éclaire les fondements. Elle offre une vision unifiée, où la mécanique 

ondulatoire apparaît non comme une rupture avec la physique classique, mais comme son 

prolongement naturel à travers le prisme de la relativité et de l’oscillation. 
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ANNEXE A 

Transition rigoureuse entre référentiels 

 

1. Formalisme de base et définitions 

Référentiel R′ (référentiel propre de la particule) 

• La particule est au repos (𝑑𝑥′ = 0), son mouvement n’est qu’une oscillation harmonique 

interne : 

𝑍′(𝜏) = 𝑋0 [𝑐𝑜𝑠(𝜔0 𝜏) + 𝑖𝑠𝑖𝑛(𝜔0 𝜏)] = 𝑋0𝑒
(𝑖 𝜔0 𝜏) 

o 𝜏 : temps propre, défini par l’invariant d’intervalle. 

o 𝜔0 = 𝑚0𝑐
2 / ħ : pulsation propre, car 𝐸0 = 𝑚0𝑐

2 = ħ 𝜔0. 

o 𝑋0 : amplitude caractéristique. 

Référentiel R (laboratoire) 

• La particule se déplace à vitesse constante 𝑣 selon l’axe 𝑥. 

 

2. Transformations de Lorentz 

On note (𝑥′,  𝑡′) les coordonnées en R′ et (𝑥,  𝑡) celles en R. 

2.1 Transformation directe 

𝑥 = 𝛾 (𝑥′ + 𝑣 𝑡′) 

𝑡 = 𝛾  (𝑡′ +
𝑣 𝑥′

𝑐2
) 

2.2 Transformation inverse 

𝑥′ = 𝛾 (𝑥 − 𝑣 𝑡) 

𝑡′ = 𝛾  (𝑡 −
𝑣 𝑥

𝑐2
) 

avec 𝛾 =
1

 √(1−𝑣2 / 𝑐2)
. 

2.3 Calcul du temps propre 

L’invariant d’intervalle : 

𝑑𝜏2 = 𝑑𝑡2 −
𝑑𝑥2

 𝑐2
. 

 

Pour un mouvement uniforme dans R, la vitesse instantanée est 𝑣 =
𝑑𝑥

𝑑𝑡
 , donc 𝑑𝑥 = 𝑣 𝑑𝑡 

𝑑𝜏 = √𝑑𝑡2 −
𝑑𝑥2

 𝑐2
= √𝑑𝑡2 −

𝑣2 𝑑𝑡2

 𝑐2
= √(1 − 𝑣2 / 𝑐2)  𝑑𝑡 =

𝑑𝑡

 𝛾
. 
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Inversement, dans R′ où la particule est au repos : 

𝑑𝑡′ = 𝛾 𝑑𝜏, puis 𝑑𝜏 =
𝑑𝑡′

𝛾
  

 

 

3. Transformation de l’oscillation 

3.1 Oscillation dans le référentiel propre R′ 

 

𝑍′(𝜏) = 𝑋0𝑒
𝑖 𝜔0 𝜏 

 

3.2 Substitution du temps propre (τ) dans R 

1. Pour exprimer τ en fonction des coordonnées (x, t) du référentiel R, on utilise les 

transformations de Lorentz : 

 

 𝑡′ = 𝛾  (𝑡 −
𝑣𝑥

 𝑐2
) 

où 

• t′ : temps mesuré dans R′, 

• t : temps mesuré dans R, 

• x : position dans R, 

• 𝛾 =
1

 √(1−𝑣2 / 𝑐2)
 : facteur de Lorentz 

2. Puis 𝜏 = 𝑡′ / 𝛾: 

 

 𝜏 = 𝑡 −
𝑣𝑥

 𝑐2
 

Ainsi :  

𝑍′(𝜏) = 𝑋0𝑒
𝑖 𝜔0 (𝑡−

𝑣𝑥
 𝑐2
)
 

3.3 Fréquence de phase 

La phase devient 𝜑(𝑥,  𝑡) = 𝜔0 𝜏 = 𝜔0  (𝑡 −
𝑣𝑥

 𝑐2
). 

𝑍 (𝑥, 𝑡) = 𝑋0𝑒
𝑖  (𝜔0𝑡 − 

𝜔0𝑣𝑥
 𝑐2

)
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On définit la nouvelle pulsation de phase : 

 𝜔𝑡 = 𝛾 𝜔0  (fréquence de phase) 

car la composante temporelle de la phase se dilate de 𝛾. 

 

3.4 Onde plane en R 

avec 

 𝑘𝑑𝐵 =
𝛾 𝜔0𝑣

 𝑐2
=
𝛾 𝑚0 𝑣

 ħ
=
𝑝

 ħ
    (vecteur d′onde), 

 

L’oscillation devient : 

 

𝑍(𝑥,  𝑡) = 𝑋0 𝑒
𝑖 (𝜔𝑡  𝑡−𝑘𝑑𝐵 𝑥), 

 

et 

𝑝 = 𝛾 𝑚0 𝑣. 

  

4. Vérifications 

• Relations de de Broglie : 

ħ 𝜔𝑡 = 𝛾 𝑚0 𝑐
2 = 𝐸𝑡;  ħ 𝑘𝑑𝐵 = 𝛾 𝑚0 𝑣 = 𝑝 

• Relation de dispersion : 

𝜔𝑡
2 − 𝑘𝑑𝑏

2  𝑐2 = (
𝑚0𝑐

2

 ħ
)

2

⟺𝐸𝑡
2 = (𝑚0 𝑐

2)2 + (𝑝 𝑐)2 

 

5. Interprétation et généralisation 

• L’oscillation en temps propre devient une onde plane spatio-temporelle sans postulat. 

• Invariant d’intervalle et phase quantique ω₀ τ sont préservés. 

Conclusion 

Appliquer les transformations de Lorentz à une oscillation propre génère naturellement la forme 

plane de la fonction d’onde, les relations de Broglie et la dispersion relativiste sans hypothèse 

ad hoc. 
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Annexe B 

Mécanique quantité et probabilité 

 

En mécanique quantique, la fonction d’onde Ψ (x,t) est une amplitude de probabilité, pas une 

probabilité en elle-même. Voici pourquoi on prend le carré (ou plus précisément le module au 

carré) de Ψ pour obtenir une probabilité : 

1. Amplitude complexe et signe 

Ψ peut être un nombre complexe ; si on prenait simplement Ψ (x,t) comme probabilité, on 

obtiendrait des valeurs qui peuvent être négatives ou comporter une partie imaginaire, ce 

qui n’a pas de sens pour une probabilité. 

2. Module au carré garantissant une quantité réelle et positive 

Le module au carré 

|Ψ(x, t)|2 = Ψ∗(x, t) Ψ(x, t) 

est toujours un nombre réel et non négatif. C’est donc la quantité naturelle pour représenter une 

densité de probabilité en x. 

3. Règle de Born 

Cette prescription (« probabilité = amplitude au carré ») est connue sous le nom de règle 

de Born. Elle garantit que : 

o L’intégrale de |Ψ|² sur tout l’espace vaut 1 (condition de normalisation) ; 

o Lorsqu’on a un système en superposition de plusieurs états, les probabilités 

s’ajoutent de façon cohérente (interférences possibles au niveau des amplitudes, 

mais somme des |Ψ|² seule donne la probabilité finale). 

4. Exemple simple 

Si Ψ est une superposition de deux « pics » localisés A et B : 

Ψ  =  𝑐𝐴 𝜓𝐴  +  𝑐𝐵 𝜓𝐵 

 

Alors 

|Ψ|2 = |𝑐𝐴|
2|𝜓𝐴|

2 + |𝑐𝐵|
2|𝜓𝐵|

2 + 2ℜ[𝑐𝐴
∗ 𝑐𝐵 𝜓𝐴

∗  𝜓𝐵] 

 

Les termes croisés expliquent les interférences, mais les “poids” des positions A et B restent 

donnés par |𝑐𝐴|
2 et |𝑐𝐵|

2. Les coefficients 𝑐𝐴 et 𝑐𝐵 devraient être normalisés (|𝑐𝐴|² + |𝑐𝐵|² = 1). 

En résumé, on élève la fonction d’onde au carré (module au carré) pour passer d’une amplitude 

(qui peut être positive, négative ou complexe) à une probabilité (qui doit être réelle, positive et 

normalisable à 1). C’est le postulat fondamental (règle de Born) qui relie le formalisme 

mathématique de la fonction d’onde aux résultats expérimentaux. 
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Annexe C 

 

Pourquoi le fait d’élever au carré la fonction d’onde aboutit à une probabilité ? 

 

1. Origine : la fonction d’onde est complexe 

En mécanique quantique, l’état d’une particule est décrit par une fonction d’onde Ψ(𝑥, 𝑡), qui est 

en général une fonction complexe. 

Exemple : 

Ψ(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

 

2. Interprétation physique : l’hypothèse de Born 

En 1926, Max Born a proposé que la probabilité de trouver la particule en un point 𝑥 à l’instant 𝑡 

est donnée par le module au carré de la fonction d’onde : 

𝑃(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2 

C’est-à-dire : 

|Ψ(𝑥, 𝑡)|2 = Ψ∗(𝑥, 𝑡) ⋅ Ψ (𝑥, 𝑡) 

où 𝜓∗ est le conjugué complexe de Ψ. 

 

3. Pourquoi le module au carré ? 

• Le module au carré est toujours réel et positif, ce qui est indispensable pour une 

probabilité. 

• La fonction d’onde, étant complexe, contient des informations sur l’amplitude (reliée à la 

probabilité) et la phase (reliée aux interférences). 

• Seul le module au carré a une signification physique directe : il donne la densité de 

probabilité de présence. 

 

4. Lien mathématique : exemple 

Prenons Ψ(𝑥) = 𝑎 + 𝑖𝑏 (avec 𝑎 et 𝑏 réels). 

Alors : 
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|Ψ(𝑥)|2 = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑎2 + 𝑏2 

C’est toujours un nombre réel positif. 

5. Pourquoi pas seulement le réel ou l’imaginaire ? 

• Si on prenait seulement la partie réelle ou imaginaire, on pourrait obtenir des valeurs 

négatives ou nulles, ce qui n’a pas de sens pour une probabilité. 

• Le module au carré, en revanche, garantit que la somme (ou l’intégrale) des probabilités sur 

tout l’espace peut être normalisée à 1. 

 

6. Résumé et justification physique 

C’est le module au carré de la fonction d’onde qui, selon l’interprétation de Born, donne la 

probabilité de présence d’une particule, car cette opération élimine la partie imaginaire et 

fournit une grandeur réelle et positive, adaptée à une interprétation probabiliste. 

 

En bref : 

• La fonction d’onde est complexe (contiens « i »). 

• Le module au carré donne une densité de probabilité réelle et positive. 

• C’est pourquoi on l’utilise pour relier la théorie quantique aux probabilités mesurées 

expérimentalement. 
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Annexe D   

Fonction d’onde gaussienne et principe d’incertitude 

CHATGPT 

Exemple de la fonction d’onde gaussienne et du principe d’incertitude 

Pour une fonction d’onde gaussienne centrée en 0 et de largeur caractéristique σₓ : 

𝜓(𝑥) =  
1

 (2𝜋𝜎ₓ2)
1
4 
  𝑒
[−(

𝑥2

4𝜎ₓ2
)]

 

on montre pas à pas que : 

𝛥𝑥  𝛥𝑘 =  1/2 

1. Définition des incertitudes 

Position : 

𝛥𝑥 =  √⟨𝑥2⟩ − ⟨𝑥⟩2 

Nombre d’ondes : 

𝛥𝑘 =  √⟨𝑘2⟩ − ⟨𝑘⟩2 

Les espérances sont définies par : 

⟨𝑥⟩  =  ∫  𝑥 |Ψ(𝑥)|² 𝑑𝑥 

et 

⟨𝑥2⟩ =  ∫𝑥2|Ψ(𝑥)|2𝑑𝑥 

 

de même pour ⟨k⟩ et ⟨k²⟩ en espace des impulsions avec ϕ(k), la transformée de Fourier de ψ(x). 

2. Calcul de Δx 

Normalisation : 

∫  |Ψ(𝑥)|² 𝑑𝑥 =  1 

Espérance de x : 

Par symétrie de la gaussienne centrée,  
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⟨𝑥⟩  =  0 

Espérance de x² : 

⟨𝑥2⟩ = ∫ 𝑥2 (
1

√2𝜋𝜎ₓ2
)exp [−

𝑥2

(2𝜎ₓ2)
] 𝑑𝑥

+∞

−∞

 =  𝜎ₓ2 

Écart-type : 

𝛥𝑥 =  √⟨𝑥2⟩ −  0 =  𝜎ₓ 

3. Calcul de Δk 

Transformée de Fourier : 

𝜙(𝑘) =
(2𝜎ₓ2)1/4

𝜋1/4
 exp[−𝜎ₓ2𝑘2] 

Espérance de k : 

Par symétrie, ⟨k⟩ = 0 

Espérance de k² : 

⟨𝑘2⟩ =  ∫𝑘2  (
√2𝜎ₓ2

√𝜋
) × exp[−2𝜎ₓ2𝑘2] 𝑑𝑘 =  

1

(4𝜎ₓ2)
 

Écart-type : 

𝛥𝑘 =  √⟨𝑘2⟩ =  
1

(2𝜎ₓ)
 

4. Produit des incertitudes 

𝛥𝑥  𝛥𝑘 =  𝜎ₓ  [
1

(2𝜎ₓ)
] =

1

2
 

5. Interprétation 

Cette valeur minimale (1/2) est la borne inférieure de l’inégalité de Heisenberg : 

𝛥𝑥  𝛥𝑘 ≥  1/2 

Seule la gaussienne réalise exactement cette borne (on dit qu’elle « sature » l’inégalité). 

Toute autre forme de paquet d’ondes donnera 𝛥𝑥  𝛥𝑘 >  1/2. 
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Ainsi, la gaussienne est le paquet d’ondes optimal pour minimiser simultanément l’incertitude 

de position et de nombre d’onde. 

1. Densité de probabilité spatiale pour deux paquets gaussiens de largeurs différentes (σ 

petit vs. σ grand) : 

o Plus σ est petit → paquet très localisé (flèche courte) → incertitude en position 

faible. 

o Plus σ est grand → paquet étalé → incertitude en position forte. 

2. Densité de probabilité spectrale (espace des nombres d’onde) : 

o Pour σ petit → spectre très large (incertitude en k grande). 

o Pour σ grand → spectre étroit (incertitude en k petite). 

Ces deux images montrent visuellement que réduire l’incertitude en position (paquet étroit) 

augmente celle en nombre d’onde (spectre large), et vice versa.  
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Densité de probabilité spatiale 

• Paquet étroit (σ=1, ligne jaune) : pic haut et étroit ⇒ forte localisation, Δx petit. 

• Paquet large (σ=3, ligne orange) : pic plus bas et large ⇒ moins localisé, Δx grand. 

 

 

Densité de probabilité spectrale 

• Paquet étroit (σ=1) : spectre très large en k ⇒ Δk grand. 

• Paquet large (σ=3) : spectre resserré autour de k=0 ⇒ Δk petit. 

 

 


