Comprendre I'Equation de Schrodinger et la mécanique ondulatoire
: Une Perspective Didactique via le Quadrivecteur
Fréquences/Vecteurs d'Onde et I'Analyse Harmonique.!

Introduction :

Objectif pédagogique

La mécanique quantique, avec son formalisme ondulatoire, a révolutionné notre compréhension
du monde microscopique. Au coeur de cette révolution se trouve I'équation de Schrodinger, pierre
angulaire qui décrit I'évolution des systémes quantiques. Cependant, sa dérivation historique est
souvent percue comme un saut conceptuel, partant de postulats qui peuvent sembler abstraits au
premier abord.

Ce document propose un exercice didactique et une perspective alternative pour appréhender
I'équation de Schrodinger et les concepts fondamentaux de la mécanique ondulatoire. Loin d'étre
une dérivation physique rigoureuse au sens strict et historique, cette démarche se veut une
construction mathématique originale, concue pour éclairer les liens profonds entre des domaines
apparemment distincts de la physique : la relativité restreinte, I'analyse harmonique (notamment
|'oscillateur) et la mécanique quantique elle-méme.

En partant de I'hypothése d'une particule au repos modélisée comme un oscillateur harmonique
abstrait, nous explorerons comment les principes de la relativité transforment cette oscillation en
une onde progressive pour une particule en mouvement. Un réle central sera accordé au
quadrivecteur fréquences/vecteurs d'onde, qui servira de pont conceptuel essentiel pour passer
de la description relativiste de I'énergie et de I'impulsion a la formulation ondulatoire. Nous
aboutirons ainsi a I'équation de Schrédinger dépendante et indépendante du temps, avant
d'étendre notre réflexion aux paquets d'ondes, a l'interprétation probabiliste de la fonction
d'onde, au principe d’incertitude et aux harmoniques sphériques.

Cet exercice vise a fournir une intuition précieuse sur la structure mathématique de la mécanique
ondulatoire, en montrant comment divers outils conceptuels peuvent converger vers une
description unifiée du comportement des particules. Il est destiné a enrichir la compréhension des
étudiants et des passionnés en offrant une vision complémentaire de ces phénomenes
fondamentaux.

Hypotheése de travail

Nous postulons, dans le cadre de cet exercice, qu'une particule au repos peut étre modélisée par
un oscillateur harmonique abstrait de fréquence fo = moc?/h, ol cette fréquence est directement
liée a I'énergie de masse via la relation de Planck-Einstein. Cette hypothese, purement
mathématique, nous servira de point de départ pour construire une représentation ondulatoire.

Pour vous initier a la relativité, je vous invite a lire mon document sur la relativité restreinte :

https://liensphysique.science.blog/wp-content/uploads/2025/06/introduction-relativite-restreinte-rm-20250626.pdf

1. Relation de de Broglie et équation de Schrodinger : https://www.youtube.com/watch?v=I6DJOhu9CHE&t=2880s
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On associe a une particule au repos (observée depuis un référentiel immobile par rapport a la
particule) une fréquence fo qui est proportionnelle a son énergie de masse

Eo =my CZ

énergie de la particule au repos selon la relativité restreinte
En considérant les équations suivantes
E=hf relation Plank — Einstein — énergie d'un photon

E=mc*=hf Postulatde de Broglie pour la particule massique*

Il en résulte que

mOCZ hfo

= et my =

Comment écrire I'équation d’oscillation ?

En supposant la particule animée d'un mouvement d'oscillation de type oscillateur harmonique,
comment peut-on écrire I'équation d'oscillation ?

Considérons le cas ol la particule est immobile dans un référentiel R;, son seul mouvement est son
mouvement d’oscillation.

Si nous prenons 'oscillation comme un déplacement dans |’espace, la relativité restreinte nous
dicte de considérer aussi son déplacement selon I’axe temporel.

En partant de I'’équation de Minkowski

ds? = —c? dt? + dx? + dy® + dz> (1)

Nous pouvons la réécrire tel que

ds* = i% c? dt?® + dx? + dy® + dz* (2)

Equation mathématiquement équivalente?. Le temps imaginaire est un artifice mathématique
pour faciliter le traitement de la situation. Il n’est qu’un outil de calcul et non une hypothese
physique. Nous remplagons une rotation hyperbolique dans I'espace-temps par une rotation
euclidienne complexe dans I'espace-temps plus facile a manipuler.

1.  Recherches sur la théorie des Quanta, Louis de Broglie, page 14 : https://tel.archives-ouvertes.fr/tel-00006807/document
5. AlbertEinstein, La théorie de la relativité restreinte et général (1954, i" édition, Gauthier-Villars, Paris, ISBN 2-04-002566-9),
Appendice Il
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En tenant compte que de I'axe des « x », aucun déplacement sur les axes « y » et « z »
ds? = (icdt)? + dx? (3)

Ce qui est la formule de Pythagore d’un triangle rectangle ou la formule d’un cercle de rayon
« ds » avec le triangle rectangle inscrit dans le cercle.

Reportons graphiqguement cette relation dans un plan complexe

Im Im
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Figure 1 : Représentation graphique nombre du complexe z=x+iy=re'? = r[cos(@)+isin(@)]
Figure 2 : Représentation graphique du nombre complexe z=dx + i cdt =ds e'? =ds [ cos(@) +i
sin(p) ]

tanp =ict/x =ic/v
L’angle « imaginaire @ » ou « angle complexe » est fonction de la vitesse. ¢p = arctan (i c/v)

1.  Nombre complexe :
https://fr.wikipedia.org/wiki/Nombre complexe#:~:text=Un%20nombre%20complexe%20z%20se,que%20i2%20%3D%20%E
2%80%931.
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Dans le cas d’un oscillateur harmonique, lorsque X est maximal la vitesse est nulle, le temps du
référentiel R; est synchrone avec le temps propre de la particule. Lorsque X est au point X, la
vitesse de la particule est maximale, le « décalage » entre le temps de R; et le temps propre de la
particule est maximal.

Le déplacement de la particule se fait dans le continuum espace-temps, le temps étant représenté
sur I'axe imaginaire « ict ». Pour tout déplacement sur I’axe des « x », en tenant compte de la
vitesse, correspond un déplacement sur I'axe « ict ». Le déplacement de « ict » est déphasé de n/2
par rapport a « X ».

En considérant la particule comme un oscillateur harmonique immobile dans un référentiel R; et
en tenant compte que de la dimension spatiale, I'oscillation de base peut étre décrite avec
I’équation

X() = Xmax (cosm fot)) ¢ =tempsduréférenciel R
Pour positionner la particule dans I'espace-temps a 4 dimensions, nous devons ajouter la partie

temporelle. Variation identique a « x », mais déphasée de 1/2 sur I'axe imaginaire. Ce qui donne le
nombre imaginaire Z.

Z(t) = Xmax (cOSRmfot)+isin(2mfot)) t=tempsduréférenciel Ry
ou écrit selon la pulsation

Z(t) = Xpax (cos(wgt) +isin(wgt)) 4)

PARTICULE EN DEPLACEMENT

Observé d'un référentiel inertiel dans lequel la particule se déplace a vitesse constante v, le
phénomeéne d'oscillation est pergu comme une onde progressive.

La fréquence d’oscillation est affectée par des effets relativistes conséquence de la vitesse relative
entre le référentiel de la particule et le référentiel d’observation.

Son comportement se déduit du quadrivecteur énergie-impulsion pour former le quadrivecteur
fréquences/vecteurs d'onde.
La quadri-quantité de mouvement est la masse multipliée

k= Mo¥ par la quadri-vitesse. My = masse au repos, immobile.
Yp Mo C cosh (0), moc
¥ p Mo Vx cosh (0)p mo vy cosh (0)p, moc
P= Y Mo Vy P= cosh (0)p mo vy P= sinh (0)p, moc
Yo Mo V; cosh (0)p mo v,
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Remplacons "mo" par son équivalent "h fo /c2"

cosh (8) p hfo/c? ¢
cosh (0) p hfo/c? ¢ cosh (0) p hfo/c? vy cosh (0)p hfo/c? ¢
sinh (0), hfo/c? ¢ P cosh (0) p hfo/c? vy P= cosh (0)p hfo/czﬁ
cosh (0) p hfo/c? v,

1o
1]

La formule de la relativité restreinte « ¢? A t?— (dx?+ dy?+ dz?) = constante » étant de type
hyperbolique, nous pouvons appliquer la trigonométrie hyperbolique aux phénomeénes de la
relativité restreinte. Le graphique suivant est représentatif des effets relativistes sur I'oscillation
associée a la particule.

%
E en Hz (E= h favec h=1) PenHz/(m/s) (h=1) fo=moc’/h O =atanh (v/c)
Eofc=fo/c=1/No (particule immobile)
Eo =fo =c/No
E¢/c =fiotale /C = cosh (0), fo/c (énergie totale de la particule) E:= fi=cosh (0),fo  (5)
1
fi/fo-cosh (B)p=vype=t/T = (6)
ct vV foc

C

Particule massique

<«——] Photon

Sinh (8)fo/c
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3: sinh (8), fo/c =y, B moc =cosh (0) p3/c fo/ c*c P= sinh(atanh(?/c))*fo/c

P = cosh (0) o fo/c v/c (7)
> = = N

P=f./c v/c = fi v/c® = E; v/C? (8)
P =cosh (0), 1/ Ao V/c = 1/Ags 9)

Adg =/ sinh (0), fo
Ecinetique = Et—Eo = fc =fi—fo = cosh (0) fo-fo = fo (cosh (8) -1) Ec.=fo*((cosh(atanh(v/c)))-1)  (10)

Ecimstique = f- = fo (5= 1) 0 = acosh ((f/fo)+1)

Nous pouvons faire 2 constats importants :

1. Lafréquence d’oscillation de la particule en mouvement vu du référentiel R; est
augmentée. Ceci découlant de la différence d’écoulement du temps entre le
référentiel de la particule et le référentiel R;. Déduit de (6).

fi=t/t fo avec t/t >=1

2. Le déplacement engendre un vecteur d’onde par effet relativiste. Ce vecteur d’onde
dépend de la différence d’écoulement du temps entre le référentiel de la particule et
le référentiel Ry et du rapport entre la vitesse de la particule et la vitesse de la lumiére.

P =sinh (0), fo/c = cosh (0), fo/c v/c = t/t 1/Ao v/c = 1/Ags

Nous remarquons facilement qu'une augmentation de vitesse se répercute par une augmentation
de fréquence et une diminution de la longueur d'onde.

Energie = Hz nombre de cycles / seconde Impulsion = 1/A nombre de cycles / métre

fo = fréquence proportionnelle a I’énergie de masse au repos. Fréquence de Compton
fi=fréquence en fonction de I'énergie totale de la particule

Ao lalongueur d’onde de Compton est en fait cette longueur d’onde

Ags la longueur d’onde de de Broglie est en fait cette longueur d’onde

L’effet relativiste génére I’équivalent d’une onde progressive.
Déterminons I'équation de cette onde progressive de ¥ associée a la particule en mouvement.

Statuons que la particule se déplace selon I'axe X (cet axe X est indépendant de I'axe X de
I'oscillateur harmonique).
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Donc, par les effets relativistes, la fréquence f, est percue augmentée et nous la notons f;.

fe = cosh(6) fo
De ce fait, la vitesse angulaire w, deviens w;
wy = 27 f; = 2m cosh(0) f,

Par effet purement relativiste, nous pouvons associer une longueur d’onde au phénomeéne
oscillatoire. C'est la longueur d’onde de de Broglie.

Le vecteur d’onde k en fonction Ags est

2m . .
kap = T kap est en radian/métre

my CZ

Bien que la fréquence propre fo = ne soit pas directement observable — en raison de sa

nature interne — elle constitue néanmoins la source fondamentale du comportement ondulatoire
mesurable des particules.

En effet, dés qu’une particule est en mouvement inertiel par rapport a un référentiel, cette
fréquence se manifeste par un effet de phase relativiste, engendrant une onde spatiale
progressive caractérisée par la longueur d’onde de de Broglie :

h

Aag =
Cette onde de phase — bien que ne transportant ni matiére ni énergie — produit des effets
physiques mesurables, tels que les interférences, la diffraction, ou les motifs de Young, observés
expérimentalement avec des électrons, neutrons, atomes ou molécules. Remarque, les motifs
observés expérimentalement sont la manifestation statistique de la densité de probabilité donnée
par |¥|?, et non de la fonction d’onde elle-méme (sujet que nous traiterons ultérieurement)

On peut donc interpréter 'onde de de Broglie comme la projection spatiale visible de I'oscillation
propre invisible f, transformée par la relativité restreinte. Autrement dit :

Le déplacement rend visible, sous forme d’onde, ce qui était une simple oscillation interne.

L’équation d’oscillation découlant de (4) en fonction du déplacement s’écrit

Y(x,t) = Py (cos(kyp x — w, t) +isin(kgp x — w; 1)) (11)

t = temps du référentiel du laboratoire
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Horizontal (vert) I'axe X, vertical (bleu) I’axe du temps qui est imaginaire, en rouge la fonction
d’onde résultante de la combinaison des deux parameétres. Il faut bien comprendre que I'équation
d’onde découle d’une représentation mathématique abstraite de I'espace-temps, ce qui doit étre
pris en compte dans toute tentative d’interprétation physique.

L’équation d’oscillation (11) en fonction de fo

Y(x,t) = Py (cos(kqpx — 2mcosh(0) fo t)+ isin(kggx — 2mcosh(0) fo t))

Pour une transition rigoureuse entre référentiels : voir I'annexe A

En partant de
1 v v
1. cosh(®) fo—3 = fr3

i _27r — 7 v
db—/ldB = T[ftcz

Introduisons ces relations dans I'équation d'onde (11), nous obtenons
@( t)—qf( (2 Zx-2 t)+"(2 Zx-2 t))
x,t) = ¥, | cos nftczx T f; isin nftczx T f;

Mettons 2 7 f; en facteur

Yxt) =¥, (cos(ant (Clzx —t))+ isin(ant (:—Zx —t))) (12)
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Equation du mouvement

A partir de I’équation (12) reformulée sous la forme d’une exponentielle de « e »

Y(x,t) = ¥, elI(znft(v12 * _t))

Equation de propagation

Recherche de I’équation de propagation associée a I’équation d’onde (13)
Calcul des dérivées partielles
Soit :

¢(x, t) = 2nf; (z x — t)
c2
Alors :
e Premiere dérivée par rapportax:
0¥ (x,t) v
——=i2nf;— ¥Y(x,t
ax ft Cz ( )
e Deuxieme dérivée par rapport a x :

2

2
6'1’—(x,t) = — (27rft C%) Y(x,t)

0x?
e Premiere dérivée par rapportat:
0¥ (x,t) » W o)
——=—-i2n X,
at ft
e Deuxieme dérivée par rapportat:

%P (x,
i AR AT

Equation d’onde
Comme déduit précédemment :

o kap=27fi

e w;=2mf,

Richard Morel L’équation de Schrédinger
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On aalors:
°¥(x,t)

axz - _kCZiB W(xyt)
et
02W(x,t) 5
T = — W¢ ll’(x, t)

On divise les deux membres pour obtenir une relation entre les dérivées :

*P(x,t)  [(kig)o*¥(x, 1)
axz  \w?) o2

Mais comme :

v kZg
kdB =27Tftc_2,wt=27'[ft => F_

Donc I'équation différentielle satisfaite par W(x, t) est :

P (x,t)  v\2 *P(x1)
axz (c_z) at?

ou de maniére équivalente :

t

2

@

(14)

2 Y(x,t) v\2 [(9*¥(x,t)
( ax? >_ (c_z) ( at?

)-o

(15)

Cette équation est une équation d’onde ou la vitesse de phase de propagation est :

Richard Morel L’équation de Schrédinger
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Ce qui découle du fait que dans une équation d’onde classique on a :
A Y(xt) ( 1 ) P P(x,t)\ 0
dx? u? at? B

etici:

1 (‘U )2 > CZ
_ = — = u=\—
uz  \¢2 v
Cette équation met en évidence une onde de phase et non une onde de transport de matiere ou
d’énergie
Etablissement de I'équation en fonction de I'énergie
Nous cherchons une formulation qui est fonction de I'énergie de la particule.

Pour la suite, nous dérivons I'équation d'onde ¥ (x, t) (15) comme suit

22 ¥(x,t)
ot?

02w, ei(z ”ft(clz x—t))
ot?

?¥(xt)

S = (2R YD

Alors I’équation (15)

2 Y (x,t) v\ (02 ¥(x,t) —0
(=) (&) (=)-

devient

0% ¥ (x, 2
(#) - (':—4> (-22n2 f2) ¥(x0) =0
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2 Y(x,t) , (fEV? 3
<—6x2 >+ 4T < o >'I’(x,t) =0 (16)

2.2
v
< tc4 ) est le terme de propagation de l'onde

= ! =— lon la relation de de B li A —()
_— — = - = | —
fi 2 — selo relation de de Broglie dB

m, = masse relativiste

Ce qui implique que

2 p? m?2 v?
ct —\ 2

Introduisons cette expression dans I'équation de propagation (16)

(269, (1o () va) -0

En considérant que m, =

Alors

h
Avech=— ety=
2m
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Z¥(x,t) Y m3v?
S [ )

Nous disposons ici d’une équation relativiste qui, cependant, se heurte a des difficultés
d’interprétation. Nous allons donc I’étudier dans le cas ol les vitesses sont trés faibles devant
celle de la lumiére. Cette approximation conduit a une formulation non relativiste, mieux
adaptée a la description des systémes quantiques a basse énergie.

1
y: —zl

)

Dans les limites des vitesses non relativistes (v << c) nous pouvons simplifier I’équation comme

suit :

Z¥(x,t) miv? B
<—ax2 >+ ( = >!P(x,t) =0 (17)

Dans le but d’exprimer I’équation en fonction de I'énergie et en observant que le terme m%vZ se
factorise naturellement en my mov2 , hous voyons qu'’il est possible de modifier une partie de
I’équation (17) ainsi
m3v? = mymyv?
hZ

et en multipliant par —
my

Nous obtenons

( h2> <az Y(x, t)) T (mgv?) ¥, 0) = 0

mg d0x?
En sachant que
E = (3)mgv? => 2 E, = myv?
cinétique — \3 myv - c = Myv

Remarque : Ceci est un point clé trés important dans la démarche qui implique d’en tenir
compte dans l'interprétation des équations qui vont suivre.
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Nous obtenons

<i2> <M>+ 2E. W(x,t)=0

my dx?

Nous divisons par 2

1
Note : E, = (E) myv?

Dans les limites des vitesses non relativistes (v << c) nous pouvons simplifier I'équation comme

suit :

( i ) (az Y, t)) +E.WP(x,t) =0 (18)

2m, dx?

Remarque : L’équation de type Schrodinger est obtenue sans postulat quantique, mais par
transition relativiste.

Appliquons une autre transformation, connaissant que
E.=E.+ Ey, => E.=E;—E,

Energie totale = Energie cinétique + Energie de masse au repos

Opérons un changement de variables

2 2
( h ) <a v, 0) + (B, —E)) W(x,t) =0

2m, dox?

Nous distribuons

( n > (62 € t)> +E W(x,t) —E,¥(x,t) =0

2m 0x?
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Nous multiplions tout par -1

2 2
_< h ><6 ‘I’(x,t)>_Et W(x,t) + Ey ¥(x,t) =0

2m, 0x?

Nous isolons E; ¥ (x, t)

2 2
_< h > (a v, t)> L Ey W0 t) = B ¥(x,0)

2m, 0x?

Dans les limites des vitesses non relativistes : v << ¢

2 2
—< h ) <a #ix, t)> +EyP(x,t) = E, P(x,t) (19)

2m, dx?

Cette méme équation en fonction de fo

_( h 2 > (62 Y(x, t)) +Ey®W(x,t) =E, P(x,t)

87f, 0x?

Il nous reste maintenant a expliciter la dépendance temporelle

Nous cherchons a exprimer I’équation en fonction de la variation du temps. Nous cherchons donc
une expression qui comprend une dérivée par rapport au temps.

L’équation recherchée, une fois dérivée doit aboutir a ce format d’équation

E.+Ey,=EFE;

Pour simplifier, nous prenons le cas de la particule libre, aucune énergie potentielle (aucune force)

ne I'affectant.

En partant de

Richard Morel L’équation de Schrédinger 15



Nous obtenons de (19)

En premier, appliquons la dérivé par rapport a X a W(x,t) (11)

( h? ) 02 W, (cos(kgpx — w; t)+ isin(kgpx —
B dx?

o tD) +hw, P t) =ho, Plot)

zmo

hz 62 q] ei(kdbx—a)t t)
— )( 9 >+fla)0'l’(x,t)=fla)t Y(x,t)

2m, 0x?
hz o ei(kdb X—w¢ t)
—<2m>(inb)( 0 Ep >+hwol}’(x,t)=hwt Y(x,t)
0

h? .
- (2 — ) (i Kap) (i Kgp)(Wo e/ kar*=@eD) 4 h oy W (x,t) = hw, P(x,t)
0

hZ
- ( ) (—K(fb) Yx,t)+hwy¥P(xt) =hw; P(xt)
2m,

Divisons par W(x, t)

Remarque :

hZ
( )(K;b)=flwt—ﬁa)0

2m

hw, égal a I'énergie cinétique
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L’équation (21) est I'’équation que nous devons obtenir a la suite de I"application des dérivations
de I'’équation d’onde. La partie de droite de (20) doit étre le résultat d’'une dérivée par rapport au
temps.

Dérivons I'équation d’onde W(x, t) (11) par rapport au temps

oY (x,t) 0, eltkabx-wrt)

5t 5% =—iw;P(xt)
Posons
- <2ii0> (az l:g t)) +hwy P(x,t) = aq’a—fx't) (22)
how,P(x,t) +hwy¥Pxt) =—-Biw:¥(xt)
Divisons par W(x, t)
how.+hwy = —fiw;

Nous voulons obtenir
hw.+hwy, = hw,

Ce qui implique que

Donc

Introduisons cette égalité dans (22)

_< h® ) (az W(x’t)>+hw0 W) =i 0

2my dx? at
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L’équation dépendante de la dérivé par rapport au temps en fonction de (20) est alors

R2 \ (929(x,t) A P(xt)
_<2m0> < P >+ Ey Y(x,t) =ih TR

_( h? ) <021P(x,t)> tmgc? Wxt)=ih EACT)

2m d0x? ot

) donne un résultat négatif

0% W(x,t)
0x2

Rappel:(

Energie totale = Energie de masse au repos + Energie cinétique

Cette inclusion de I'énergie au repos Eo est inhérente a notre approche de départ, ou la fréquence
w: de I'onde représente I'énergie totale relativiste de la particule, contrairement a I'approche
standard de Schrodinger ou la fréquence w (sans indice) est associée a I'énergie mécanique du
systéme (énergie cinétique + potentielle). Néanmoins, cela garantit une cohérence avec les
résultats physiques de la mécanique quantique non relativiste."

Particule soumise a un potentiel, a une force

Les équations précédentes font référence a une particule libre, soumise a aucune force. Nous
allons aborder le cas d’une particule soumise a un potentiel V unidimensionnel. Dans cette
situation, I'’équation dépendante de la position et du temps s’écrit

0P(xt) h? 2 ¥(x,t)
A —5 =~ (2 mo> ( I > +V(x,t) ¥(x,t) + Eg P(x,t) (24)

L’énergie totale = I’énergie cinétique + I’énergie potentielle + I'énergie de masse au repos
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Le potentiel V et la fonction d’'onde ¥ peuvent dépendre du temps et de la position,
V (x,t) et ¥(x,t), I'énergie E, est constante.
L’équation indépendante du temps*

Dans un grand nombre de situations, le potentiel ne dépend pas explicitement du temps.
La dépendance en temps peut alors étre séparée de celle en position. Posons

Y(x,t) = P(x) f(0)

Dans ces situations, I'équation (24) s’écrit alors

2
imﬂ@afa>:_<h,ﬂw><wwu)

ot 2m, dx?

>+V )Y@ f() + Ep ¥(x) f(O)

En divisant par ¥(x) f(t)

;Ldﬂo__(hz 1>(¥¢u)

th £ " dt 2my ) ) \ T dx? >+V(x) + Eo

Le membre de gauche ne dépend que du temps et le membre de droite ne dépend que des
coordonnées spatiales. Les dérivées partielles sont changées en dérivées ordinaires, car chaque
membre ne dépend que d’une variable. Comme les variables peuvent varier de maniere
indépendante, chague membre doit étre égal a une méme constante que nous notons B.

La partie de droite est la somme de Eo qui est une constante et d’une équation selon X. Comme la
somme est une constante et que EO est une constante donc I'équation selon X est une constante
(que nous notons D).

B=D+E,

Donc

1. Thornton |Rex, Physique moderne (3¢ édition, de boek, page 205)
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On intégre pour trouver la constante B.

ihf(%df)szdt

On calcule les deux intégrales, ce qui donne
ihlnf=Bt+C

Ou C est une constante d’intégration que I’on peut choisir égale a 0. Donc,

In f Bt
nf=—

ih
De cette équation on déduit f,

Bt iBt
f(t)=eh = e h (25)
Dt Ept _ipt _iEpt
f(t):eiheih:e R e &

Si 'on compare cette expression pour f a la fonction d’onde de la particule libre, ayant la
dépendance temporelle, on voit que B = h w; = E; = E¢4, + Ej. Cest le résultat général.

On a donc
i %%(tt) = E, = Constante
P\ (40 ) 5
a (2 m0> ( dx? > +V () Y(x) + Eo P(x) = Eeorar P(x) (26)

h? d?
—( ) < lp(x))+V(x)l/J(x) =E () — Eop(x)

2m dx?

R\ (d* P(x) _
- +V (x) ¢(x) - Ecinétique 1/)(x) + Epotentiel 1/)(x)

2my dx?

E. (x) + E,(x) étant I'énergie “mécanique”, pour simplifier nous allons I'identifier par

Emécanique ou Em
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2 2
a ( : ) (d ll}(X) ) tV (x) l‘b(x) = Emécanique ll}(x) (27)

2m, dx?

Nous retrouvons, ici, I’équation de Schrodinger indépendante du temps. C'est une équation
fondamentale en mécanique quantique.

L’équation précédente peut se réécrire

d? P(x) N 2my(Ep — V (%))
dx? h2

YPx) =0 (28)

Dans le cas d’une particule libre, aucun potentiel ou potentiel constant

2 2
5 (22

2m, dx?

On peut réécrire I’équation (25) sous la forme

iEct

f(t) = e_(T) = e_i wet
Et I'équation d’'onde ¥ (x, t) devient

Y(x,t) = P(x) eteet

Dans le cas de cette équation, ou le potentiel ne dépend pas du temps, on a
YHry = 1/)2(x) eiwt t e—ia)t t
Y = P*(x)
Les distributions de probabilité (données importantes en mécanique quantique que nous ne

détaillerons pas dans ce document) sont constantes au cours du temps. En mécanique quantique,
on dit que le systeme est dans un état stationnaire.
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Exercice 1'

Considérons un métal dans lequel les électrons sont libres, le potentiel étant nul. Quelle forme
mathématique prend la fonction d’onde ¥ (x) ?

Résolution de I'équation (26), I'équation indépendante du temps. V(x) =0, il faut résoudre
I’équation différentielle sur y(x).

n2 ) (& p) .
- +V @) Yx) + Eg Y(x) = Erprar P (%)

2my dx?

n?\ (d?
— < ) < ll)(x) ) + E, ll](x) = Etotal l»b(x)

2m, dx?

2 2
_< h ) <d 1,0()()) = Eoral l/J(X) — E, l,[)(X)

2m, dx?

2\ (d* p(x)
- <2 mo) < dx? > = Ecinetique Y(%)

d>P(x) _2my E,
dx?2 h2

W) = —kipPp(x)

On n’écrit plus explicitement la dépendance en x de Y (x) et on réécrit cette expression sous la
forme

dy 2mgy E,

dx2 B2 Y = —kigy

1. Thornton |Rex, Physique moderne (3¢ édition, de boek, page 207, Exemple 6.5)
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Limite du modéele de I'oscillateur harmonique

Toutefois, un point subtil réside dans I'usage du formalisme relativiste pour définir une onde de
matiére plane : on considere une onde monochromatique de portée infinie, ce qui est un outil
mathématique idéal plutét qu’une situation physique réalisable (une particule libre réelle devrait
étre représentée par un paquet d’ondes normalisable). Ce choix d’onde plane simplifie
grandement les mathématiques, mais il constitue un cas trés particulier. En particulier, cela omet
la question de la localisation de la particule et limite la portée de la déduction aux ondes
stationnaires étendues, sans aborder comment une superposition pourrait conduire a une
particule localisée.

Pour remédier a cette non-localisation, la construction d'un paquet d'ondes normalisable par
superposition linéaire d'ondes planes avec des coefficients appropriés serait une solution.

Pourquoi normaliser la fonction d’onde ?

En mécanique quantique, la fonction d’onde W(x) contient toute I'information sur I'état
d’une particule. Cependant, |¥(x)|? n’a de sens physique que s'il représente une densité
de probabilité : |¥'(x)|? dx donne la probabilité de trouver la particule entre x et x + dx

Pour que cette interprétation soit valide, la somme (ou I'intégrale) de toutes les
probabilités sur I'espace doit étre égale a 1, c’est-a-dire que la particule doit se trouver
quelque part avec certitude.

Condition de normalisation :

+o00
f W2 dx = 1
—00
Seules les fonctions d’onde normalisables (pour lesquelles I'intégrale ci-dessus converge)
décrivent des états physiques possibles.

Modele de I'oscillateur anharmonique
Lorsqu'on prend en compte la dépendance relativiste de I'inertie, caractérisée par I'accroissement
du facteur

Y= 72

( cz)
avec la vitesse de la particule, le systéme oscillant n’obéit plus a une dynamique linéaire.
L’équation du mouvement devient non linéaire, du fait que la masse effective varie au cours de
I’oscillation. Il en résulte un comportement anharmonique, dans lequel la fréquence propre du

systeme dépend de I'amplitude, rompant la symétrie temporelle caractéristique de I’oscillateur
harmonique.
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Dans la mesure ol le mouvement reste périodique, il est néanmoins possible de lui associer une
décomposition en série de Fourier. Cette décomposition permet de représenter le signal
temporel de l'oscillateur anharmonique comme une superposition d’oscillations harmoniques,
chacune correspondant a une composante fréquentielle définie. Il s’agit ici d’'une représentation
mathématique du contenu spectral du systéeme, et non d’une subdivision physique en
oscillateurs indépendants.

En attribuant a chague mode harmonique une onde plane associée, via les relations de de Broglie

Et=h(l)t p=hk

cette superposition donne lieu a un paquet d’ondes. La vitesse de groupe de ce paquet, définie

Jdw;
Ugroupe = Ok
dB

coincide avec la vitesse de la particule dans le cadre de la relation de dispersion relativiste. Ce fait
assure la cohérence du modeéle ondulatoire, dans lequel la dynamique du corpuscule est
représentée par la propagation d’une enveloppe ondulatoire.

Ce cadre de description justifie alors, dans les limites considérées, I'usage du paquet d’ondes
comme modélisation de la particule massive relativiste. Il établit un lien entre I’'anharmonicité
induite par les effets relativistes et la représentation ondulatoire de la matiére, en s’appuyant sur
la structure fréquentielle intrinseque du mouvement.

Développement mathématique de l'idée d'oscillateur anharmonique et de sa
représentation en paquet d'ondes
Oscillateur relativiste (inertie variable)

En relativité restreinte, la masse invariante mo reste constante, mais l'inertie augmente avec la
vitesse via le facteur de Lorentz :

L'impulsion devient :

p=ymyx
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L’équation du mouvement s’écrit :

(%)(ymofc)+l(x=0

Développons :

d mox
()| = |+ Kx =0

C’est une équation non linéaire et non analytique (due a la racine), donc le mouvement n’est plus
sinusoidal. C’'est un oscillateur anharmonique relativiste. Le terme d’inertie dépend de x.

Comportement non harmonique et spectre en fréquences

Un tel oscillateur ne produit pas une fréquence unique. Au lieu d’une oscillation a une seule
fréquence w, on obtient un spectre de fréquences.

Si I’'on suppose que le mouvement reste périodique (cas borné), on peut le décomposer en série
de Fourier :

x(t) = Z A, cos(nwot + ¢;,)
n=1

ou, sous forme complexe :

o]

x(t) = 2 cpein@ot

n=-—oo

Chaque terme représente une oscillation harmonique de fréquence nwo. L'oscillateur
anharmonique est donc mathématiquement équivalent a une somme d’oscillateurs
harmoniques.
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Représentation spatiale : onde plane associée a chaque harmonique

Dans la décomposition en série de Fourier d’un signal strictement périodique de fréquence
fondamentale wo, chaque harmonique porte une fréquence

Wy = Nwy,

avec n € Z. Autrement dit, on retrouve la fondamentale (n = 1) puis ses harmoniques (n = 2
double, n = 3 triple, etc.).

En pratique, pour un oscillateur anharmonique relativiste borné et périodique, la non-linéarité
introduit bien ces multiples entiers de la fréquence fondamentale wo dans le spectre

A chaque fréquence wn = nwo. , on associe une onde plane (type de Broglie) :

lpn(x,t) = Anei(knx_wn 2

avec :
Pn E,
h

knzg et w, =—

k., estle nombre d’ondes qui dépend de la vitesse de la particule dans le référentiel du
laboratoire.

On construit alors un paquet d’ondes :

P = ) Ayeitnrond
n
ou en continu (si le spectre est dense) :
P(x,t) = f A(k) elkx=t) gk

C'est exclusivement la dépendance relativiste de I'inertie (facteur y) qui brise I'harmonicité :
I"anharmonicité observée découle uniquement des effets de la relativité restreinte, et non d’une
modification du potentiel.

Vitesse de groupe et propagation
La vitesse de groupe v, du paquet d’ondes est :

_ dwy
~ dkgp

Vg

Pour que le paquet d’ondes décrive correctement la particule, il faut que vg = Vparticule-

Par exemple, pour une particule libre avec la relation de dispersion relativiste :
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1
we(kgp) = n \/ (hkgpc)? +myc?

alors :

dw, hkypc pc?

= = —_— ’U .
dkgp \/ (hkggc)? + myc? E; particule

Vg

La vitesse de groupe est bien la vitesse de la particule, ce qui justifie pleinement I'identification de
la trajectoire de la particule avec I'enveloppe du paquet d’ondes.

Conclusion du développement mathématique

e La prise en compte de la relativité rend I'oscillateur anharmonique, via la dépendance de
la masse effective a la vitesse.

e Toute fonction périodique (ici, le mouvement non sinusoidal) peut étre décomposée en
série de Fourier : la dynamique est décrite comme une superposition d’oscillateurs
harmoniques.

e Chaque composante harmonique peut étre associée a une onde plane, permettant une
représentation ondulatoire compléte.

e Lasomme de ces ondes forme un paquet d’ondes, dont la vitesse de groupe est égale a la
vitesse de la particule.

Mathématiquement, le modele d’un oscillateur relativiste fournit donc une base robuste a la
représentation par paquet d’ondes d’une particule massive.

De maniére générale, tout modele d’oscillateur anharmonique offre une base tout aussi solide a
cette représentation.

Paquet d’onde!

Pour un paquet d’ondes, nous retrouvons une vitesse de phase et une vitesse de groupe.
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La vitesse des crétes de I'onde, appelée la vitesse de phase, est donnée par

_ Wtotale
17phase -

P w totale = w cinétique + w de masse
dB

Alors que la vitesse de I'enveloppe, appelée la vitesse de groupe, est donnée par

dw;
VUgroupe = ok
dB

Ici, pour notre onde, on a

Et=h(l)t
p=hkap

1. Luc Tremblay, Application de E = hf a des particules massives : http://physique.merici.ca/ondes/preuve-Ehf.pdf

Puisque
E, = ’mgc“' + p2c?

hwe = \/mgc‘* + h? k2, c?

(\/mgc“' + h2 kczibcz>

h

Ona

W =

Ainsi, la vitesse de groupe est

_ Owy
 Okgp

- < 2khZe?

\/m(z,c‘* + h? k3, cz>

Vg

kdb hcz

|
()
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_pc?
-2

2
_ Y MyVparticule €
y moc?

Vg = VUparticule

La vitesse de groupe est donc égale a la vitesse de la particule.

La vitesse de phase est
W
V. = —
phase
kap

E,

Yy moc?

Y mg 17parlticule

CZ

Uphase =
particule

Notez qu’on a alors le résultat intéressant

C2
Vg Uph = Uparticule ( )

1Jparticule

Vg Uph = C

Puisque la vitesse de la particule est toujours inférieure a la vitesse de la lumiére, la vitesse de
phase est toujours plus grande que la vitesse de la lumiére !
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Une particule se déplace sous le format d’un paquet d’ondes dont la vitesse de la particule est la
vitesse de groupe de ce paquet d’ondes.

Position de la particule et probabilité

En raison de sa nature mathématique, I'onde prend des valeurs complexes, avec une partie réelle
et une partie imaginaire. Il est donc plus approprié de parler de « fonction d'onde » plutét que
« d'onde » pour désigner cette entité mathématique.

La fonction d’onde W (x,t) comporte I'unité imaginaire i = v—1 qui est un outil formel sans réalité
physique. Bien que la fonction d'onde elle-méme ne soit pas directement mesurable, le carré de son
module | W [2=¥ * ¥ (ou ¥ * est le complexe conjugué) revét une existence concréte et mesurable
dans le monde physique.

Par analogie aux ondes lumineuses, dans I'expérience des deux fentes de Young, un lien est fait
entre le carré du module de I'onde et I'intensité en un point de I'écran. Plus I'intensité est élevée en
un endroit plus il y a de chance de détecter une particule. De ce fait, la probabilité de présence d’une
particule est proportionnelle a I'intensité a un endroit déterminé, donc proportionnel au carré du
module de I'onde. Le module au carré est toujours réel et positif, ce qui est indispensable pour une
probabilité.

Plus spécifiquement | W |2 donne la densité de probabilité. La probabilité au sens strict est un
nombre compris entre 0 et 1 qui mesure la chance qu’un événement se produise. Ce nombre est
multiplié par 100 pour obtenir le pourcentage de chance.

Formellement :
Si P désigne la probabilité de trouver la particule dans I'intervalle [a, b], alors :

P = fbp(x) dx

a

ou p(x) est la densité de probabilité.

La probabilité de trouver la particule dans [a,b] s’obtient en intégrant | W |2 sur cet intervalle.

b
P =f |W(x,t)|*dx
a

Pour que cette interprétation soit valide, la somme (ou I'intégrale) de toutes les probabilités sur
I’espace doit étre égale a 1, c’est-a-dire que la particule doit se trouver quelque part avec
certitude.

Condition de normalisation :

+o0
f W(x,)|?> dx =1
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Simulation de la probabilité de présence d’une particule (a 0:13)

Voir Annexe B (Mécanique quantité et probabilité)

Voir annexe C (Pourquoi le fait d’élever au carré la fonction d’onde aboutit a une probabilité ?)
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Principe d’incertitude

Il découle que la probabilité de détecter une particule dans une région donnée de I'espace dépend
directement de la forme de la fonction d’onde. Une onde plane, caractérisée par une seule valeur
de k (vecteur d’onde), est étendue sur tout I'espace et ne permet pas de localiser la particule avec
précision. En revanche, un paquet d’ondes, constitué de la superposition de plusieurs ondes de
nombres d’onde k différents, permet de concentrer la probabilité de présence dans une zone
restreinte. Plus les composantes de I'onde sont regroupées, plus la localisation de la particule est
précise. La précision de la position dans 'espace est inversement proportionnelle a la précision sur
le vecteur d’onde (quantité de mouvement). Pour localiser I'enveloppe dans x, il faut additionner
beaucoup de porteuses de k différents afin que leurs phases s’annulent partout... sauf dans un
domaine court.

Source : https://commons.wikimedia.org/w/index.php?curid=4837114

Vues des fonctions d'onde décrivant la position (xo) ou la quantité de mouvement (ko) de (a) une
onde pure (b) un paquet d'ondes et (c) un corpuscule parfaitement localisé. L'onde étant de
fréquence pure, son énergie est parfaitement définie, mais elle n'est pas localisée dans I'espace.

Inversement, le corpuscule est parfaitement localisé, mais n'a pas de fréquence déterminée. Le
cas général est celui du paquet d'ondes qui est distribué en fréquence comme en espace. Du fait
de I'équivalence mathématique entre ces deux représentations, I'étalement spatial est
inversement proportionnel a I'étalement de I'impulsion
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Paquet d’ondes et spectre

e Notre particule est décrite par une fonction d’onde ¥ (x)
e Pour connaitre ses composantes d’impulsion, on fait la transformée de Fourier ®(k)
e Lalargeur (dispersion) de |¥(x)|? mesure Ax et celle de |®(k)|? mesure Ap.

Inversion de Fourier

e Mathématiquement, plus W (x) est concentrée (petit Ax), plus sa transformée ® (k) est
étalée (grand Ap), et inversement.

e (’est un théoréme de I'analyse de Fourier : on ne peut pas a la fois avoir une fonction et
sa transformée toutes deux trés concentrées.

Ax et Ap sont les écarts-types (variances) de la position et de I'impulsion pour la fonction d’onde
¥(x)

L'incertitude est une propriété fondamentale de la nature, et non une limite expérimentale et
n’est pas d{ a une perturbation lors de la mesure.

D{ a cette propriété fondamentale de la nature, il est impossible de connaitre simultanément et
exactement la position et I'impulsion ou la vitesse d’une particule. Notons que le terme

« indétermination » serait plus approprié que «incertitude », car il reflete mieux la nature
intrinseque de cette limitation ; cependant, pour des raisons historiques, c’est le terme
«incertitude » qui s’est imposé dans la littérature scientifique.
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Relation d'incertitude de Heisenberg pour une particule libre (vidéo)

Pour le simulateur : https://www.icp.universite-paris-saclay.fr/introduction-a-la-theorie-

quantique/

Pour modéliser le paquet d’ondes en mécanique quantique on référe couramment a
une gaussienne.

Plusieurs raisons poussent a choisir une forme gaussienne pour la fonction d’'onde en mécanique
quantique, notamment :

1. Inégalité d’incertitude optimale
La gaussienne est la seule forme de paquet d’ondes qui sature exactement |'inégalité de
Heisenberg

Ax Ak = 1/2

En d’autres termes, pour une gaussienne, I'incertitude sur la position et celle sur le nombre d’onde
(ou la quantité de mouvement) sont réparties de fagon optimale : on ne peut pas faire mieux.
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2. Transformée de Fourier simple
La transformée de Fourier d’'une gaussienne est elle-méme une gaussienne.

P(x) o io” < (k) < e 9 K,

Cette propriété facilite grandement les calculs, notamment pour passer du domaine de I'espace au
domaine des impulsions.

3. Evolution temporelle analytique
Sous I’"hamiltonien de particule libre, un paquet gaussien reste gaussien a tout instant,
simplement avec un étalement (o(t)) qui s’élargit de facon connue. Cela permet de suivre
exactement la dispersion du paquet d’ondes sans recourir a des approximations
numériques lourdes.

4. Représentation de paquets localisés
Physiquement, une particule réellement localisée ne peut pas étre décrite par une onde
plane infinie. Un paquet gaussien modélise un état « quasi-localisé » et permet d’étudier
la propagation et la diffusion spatiale d’une particule libérée ou confinée.

5. Lien avec l'oscillateur harmonique
Les fonctions propres de |'oscillateur harmonique quantique sont des polynémes de
Hermite fois une enveloppe gaussienne. Autrement dit, la gaussienne est la base naturelle
du cas quadratique, ce qui simplifie I'étude de petits mouvements autour d’un minimum
de potentiel.

6. Simplicité mathématique et symétrie
La forme exponentielle en -x? est symétrique, lisse, et ne présente pas de discontinuités ni
de coins. Elle est donc tres commode pour des manipulations analytiques et pour assurer
gue la fonction d’onde et ses dérivées sont partout bien définies.

En résumé, la gaussienne offre un compromis idéal entre localisation spatiale, contréle minimal
de l'incertitude, et facilité de calcul aussi bien en espace qu’en impulsion. C'est pourquoi elle
constitue souvent le « paquet d’ondes de choix » pour illustrer et étudier de nombreux
phénomeénes en mécanique quantique.

Voir I'annexe D (Fonction d’onde gaussienne et principe d’incertitude)
La formule d’Heisenberg pour le principe d’incertitude se déduit de la relation suivante :
Ax Ak =1/2
Or, comme :
p=nhkag = kgp =p/h
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En substituant dans I'inégalité précédente, on obtient :

D 1 (Ap) 1 h

xA\7 )=z = Mx | |=z=4xAp =<
x (h) 2 \w)=27 P73

Cette valeur h/2 représente la borne inférieure théorique : en pratique, on peut observer

Ax Ap > h/2

La forme générale du principe d’incertitude s’écrit donc :

Ax Ap = h/2

Le paquet d'ondes d'une particule n'est pas obligatoirement une gaussienne

Tout état quantique localisé peut se construire comme une superposition d’ondes planes, et la
forme de I'enveloppe spatiale peut étre n’importe quelle fonction carrément intégrable (a

”

condition gu’elle soit normalisable). La gaussienne est simplement la plus commode et “optimale
(sature I'inégalité d’incertitude, reste gaussienne sous dispersion...), mais on rencontre aussi :

e Paquet rectangulaire

e Paquet de Lorentz

e Paquet “chapeau mexicain” ou combinaisons de gaussiennes
Chaque forme a ses avantages et inconvénients :

e Rectangulaire/sinc : localisation « compacte » en espace, mais spectre a lobes latéraux,
plus difficile a mattriser.

e Lorentzienne : spectre simple (exponentiel), mais queue spatiale longue (moins localisée).

e Gaussienne : le juste milieu, pas de lobes secondaires, spectre simple, évolution
analytique.

En pratique, on choisit la forme du paquet d’ondes selon le probléme physique (confinement dans
un puits, diffusion, formes initiales expérimentales, etc.)
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La fonction d’onde et 'atome d’hydrogéne

Dans I'atome d’hydrogene, composé d’un proton et d’un électron, la fonction d’onde fournit
I"approche mathématique pour comprendre le comportement le I’électron autour du proton.

Les positions possibles de I’électron sont liées aux ondes stationnaires qui découlent de la fonction
d’onde. Rappel : ces ondes ne sont pas réelles, mais imaginaires (fonction complexe). Elles
découlent des artifices mathématiques émis au départ. Seul le passage aux probabilités de
présence apporte une information réelle sur la position de I’électron. La quantité qui a un sens
physique direct est la densité de probabilité de présence, obtenue en calculant le carré du
modaule de la fonction d'onde, |W|% Item que nous aborderons plus loin.

Le potentiel de Coulomb autour du proton a une symétrie sphérique, car il dépend que de la
distance entre les deux particules chargées. Nous pouvons considérer le potentiel coulombien
comme une «sphere» 3D a surface équipotentielle. Il s’agit d’une symétrie sphérique du
potentiel et non d’une surface rigide. Les ondes stationnaires seront contraintes de s’établirent
dans cette espace R® a symétrie sphérique.

e Une onde stationnaire classique (comme sur une corde ou une membrane plane) est une
vibration oU certains points restent fixes (nceuds) et d'autres oscillent avec une amplitude
maximale (ventres).

e Sur une spheére, les modes propres d’oscillation (formes de vibration naturelles) prennent
la forme d’harmoniques sphériques : ce sont des motifs stationnaires qui présentent des
zones nodales (ou la fonction s’annule) et des zones de ventres, répartis selon la
géomeétrie sphérique

e Mathématiquement, les harmoniques sphériques sont les fonctions propres du laplacien
sur la sphere, et toute vibration stationnaire de la surface d’une sphére peut étre
décomposée en une somme d’harmoniques sphériques, exactement comme toute onde
stationnaire sur une corde peut étre décomposée en modes sinusoidaux

e Physiquement, cela signifie que les harmoniques sphériques sont les motifs d’onde
stationnaire possibles sur une sphére, chacun caractérisé par un nombre de nceuds selon
la latitude et la longitude

e Les harmoniques sphériques sont bien I'équivalent des ondes stationnaires, mais adaptées
a la surface d’'une sphere, avec des motifs nodaux spécifiques a cette gé¢ométrie

Richard Morel L’équation de Schrédinger 37



Plus spécifiqguement, I'état quantique de I'électron est décrit par une fonction d’onde complexe
W(r, 6, ¢), solution de I’équation de Schrodinger indépendante du temps :

hz
— <(2LO>ATP(T,9,¢) + V(r)?%j;9,¢) = F q“f’gyw)

avec

e h (h-bar) le réel de Planck réduit,

1 P . .
. masse réduite. Tiens compte de la masse du proton et de la masse de I'électron. Le

proton n'est pas infiniment lourd, le systéeme tourne autour d'un centre de masse
commun,

e Alelaplacien,

e V()= — le potentiel coulombien a symétrie sphérique,

22
(4meer)

E I’énergie de |'état stationnaire.

Séparation des variables
En coordonnées sphériques (r, 8, ¢), on pose :

Yoem (1,0, 0) = Rpp(r) Y{’m 6,9),

e R, ,(r) défini par des polyndmes de Laguerre généralisés, dont les zéros radiaux
correspondent aux « nceuds » dans la direction 7.

e Y7 (0,9), sont les harmoniques sphériques, fonctions propres du laplacien angulaire sur
la sphére S?, satisfaisant

Les indices quantiques (n, £, m) déterminent respectivement :
e n:nombre de nceuds radiaux + 1 (niveau principal),

o (nombre quantique principal) (n € N* ) : Il détermine principalement le niveau
d'énergie de I'électron. Il est aussi lié a la taille moyenne de I'orbitale. Le nombre
de nceuds total de la fonction d'onde est n-1.
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e £ :nombre de zones nodales selon la latitude

(nombre quantique azimutal) (€ € N ) : Il détermine la forme globale de I'orbitale
(le nombre de surfaces nodales qui passent par le noyau) et est souvent associé
aux lettres s, p, d, f...

e |=0 (orbitale s) : Forme sphérique, aucun nceud angulaire.
e |=1 (orbitales p) : Forme de "lobe", un plan nodal.
e |=2 (orbitales d) : Formes plus complexes, deux plans nodaux.

e m : projection angulaire (nombre de zones nodales selon la longitude).

o (nombre quantique magnétique) (-€ < m < €): Il détermine I'orientation de
|'orbitale dans I'espace. Plus précisément, il est lié a la projection du moment
cinétique sur un axe (généralement z). La valeur absolue | m | correspond au
nombre de nceuds angulaires qui contiennent |'axe z (comme des plans méridiens
ou "de longitude").

Densité de probabilité
La quantité physiguement mesurable est la densité de probabilité :

p(r,0,0) = |[Ynem (r,0,0)|

et la probabilité de trouver I’électron dans le volume élémentaire d3r autour du point (r, 8, @) est
P=|¥(r06,¢) % dr.

Quantification des niveaux d’énergie
Les conditions aux limites (régularité enr = 0 et décroissance a I'infini) n"admettent que des
valeurs d’énergie discretes,

pet

En =—————
" 2(4mey)? hZn?

correspondant aux seules ondes stationnaires admissibles. Exemple : La valeur numérique de E; =
-13,6 eV.

Ainsi, la mécanique quantique de I'atome d’hydrogéne apparait comme la description d’ondes
stationnaires complexes, ou seules les configurations satisfaisant les conditions physiques et
géomeétriques du probléme produisent des niveaux d’énergie et des densités de probabilité bien
définis.
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Les résultats obtenus pour I'atome d’hydrogene a partir de I’équation de Shrodinger a permis le
bien-fondé de cette équation.

I P (cos ) cos(my) P, (cos §) sin(|m|p)

05 Z

i i oy

2|d L ARAE Tt

3|f R B A

49 ds K X+ ¢ % X ke

Sth| o 3K % % ¥ §| % &k X Mo

Slilac P8 R K & F ¢t X K K K
m| 6 5 4 3 2 1 0o 1 -2 -3 4 -5 -B

Image pour les harmoniques sphériques réelles

By 3edp - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=85303448

Simulateur : Fonction d’ondes de I’'atome d’hydrogéne

Lecture suggérée pour plus de détails :

Thornton |Rex, Physique moderne (3¢ édition, de boek, chapitre 7)
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CONCLUSION

Ce document a proposé une construction pédagogique de I'’équation de Schrédinger fondée sur
une articulation rigoureuse entre relativité restreinte, oscillation harmonique et mécanique
ondulatoire. En modélisant une particule au repos comme un oscillateur harmonique abstrait,
nous avons montré comment les effets relativistes transforment cette oscillation en onde
progressive, conduisant a une représentation compléte par la fonction d’onde.

Le quadrivecteur fréquences/vecteurs d’onde a joué un réle central, permettant de relier
naturellement I'énergie, la fréquence, I'impulsion et la longueur d’onde. Cette approche a mené,
sans postulat quantique arbitraire, a I'équation de Schrodinger — dans ses formes dépendante et
indépendante du temps — comme conséquence d’une transition relativiste cohérente.

L'interprétation probabiliste de la fonction d’onde, essentielle a la mécanique quantique, est ici
replacée dans un cadre dynamique : la densité de probabilité devient I’expression naturelle de la
localisation partielle d’un paquet d’ondes. C’'est dans ce contexte qu’émerge le principe
d’incertitude, non comme une limitation mystérieuse, mais comme une conséquence directe de la
périodicité et de la superposition des ondes. La contrainte 4x Ap = h/2 résulte alors de la
structure méme des paquets d’ondes, soulignant I'impossibilité de localiser parfaitement une
particule sans en altérer la composante impulsionnelle.

Cette démarche offre également une base solide pour la compréhension des systemes liés. En

particulier, I'atome d’hydrogéne constitue un exemple fondamental ou I'équation de Schrédinger,
appliquée a un potentiel coulombien central, permet de retrouver avec une précision remarquable
les niveaux d’énergie quantifiés observés expérimentalement. L'apparition des nombres

quantiques, des orbitales et des harmoniques sphériques découle directement de la résolution de
cette équation en coordonnées sphériques — justifiant I'lapproche ondulatoire comme description

fidele de la structure atomique.

Enfin, en généralisant a |'oscillateur anharmonique relativiste, on montre que méme lorsque la
dynamique devient non linéaire, une description ondulatoire reste possible via la construction de
paquets d’ondes associés a chaque mode harmonique. La cohérence entre vitesse de groupe et
vitesse de la particule renforce alors la validité de cette modélisation.

Cette perspective ne prétend pas se substituer a la formulation canonique de la mécanique
guantique, mais elle en éclaire les fondements. Elle offre une vision unifiée, ou la mécanique
ondulatoire apparait non comme une rupture avec la physique classique, mais comme son
prolongement naturel a travers le prisme de la relativité et de I'oscillation.
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ANNEXE A

Transition rigoureuse entre référentiels

1. Formalisme de base et définitions
Référentiel R’ (référentiel propre de la particule)

e La particule est au repos (dx’ = 0), son mouvement n’est qu’une oscillation harmonique
interne :

Z'(1) = X, [cos(wg T) + isin(wy 7)] = X,eE@oD
o T :temps propre, défini par I'invariant d’intervalle.
o wg =myc? /h: pulsation propre, car E, = myc? = h w,.
o X9 :amplitude caractéristique.
Référentiel R (laboratoire)

e La particule se déplace a vitesse constante v selon I'axe x.

2. Transformations de Lorentz
On note (x', t’) les coordonnées en R' et (x, t) celles en R.

2.1 Transformation directe
x=yx'+vt")

, vx'
t=y |t +C_2

x'=y(x—-vt)
oy e-2)

2.2 Transformation inverse

c2
_ 1
avecy = W
2.3 Calcul du temps propre
L'invariant d’intervalle :
dx?
dr? = dt? — —
c

. . . . dx
Pour un mouvement uniforme dans R, la vitesse instantanée est v = E , donc dx =vdt

dr:\/dthi—’f:\/dﬂ—”zd”: A-v2/c®)dt =%

c? %
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Inversement, dans R’ oU la particule est au repos :

!

dt' = ydrt, puisdt = th

3. Transformation de I’oscillation

3.1 Oscillation dans le référentiel propre R’

Z'(1) = Xpe'®oT

3.2 Substitution du temps propre (t) dans R

1. Pour exprimer t en fonction des coordonnées (x, t) du référentiel R, on utilise les

transformations de Lorentz :

ou

1
* = J(@-v2/c?

2. Puist=t'/y:

Ainsi :

3.3 Fréquence de phase

=y (e-3)

t': temps mesuré dans R’,
t : temps mesuré dans R,

x : position dans R,

; : facteur de Lorentz

(29
T=t——
c

Z'(t) = Xoeiw" (t_%)

La phase devient ¢ (x, t) = wy T = w, (t - %)

Richard Morel
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On définit la nouvelle pulsation de phase :
w; =Y wqy (fréquence de phase)

car la composante temporelle de la phase se dilate de y.

3.4 Onde plane en R

avec

_ Y@V _YmeV Pp ,
kag = 2 - 1§ " & (vecteur d'onde),

L’oscillation devient :
Z(x, t) = XO ei (wt t—kqp X)’

et

p=ymgv.

4. Vérifications
e Relations de de Broglie :
hw, =ymoc?=E; hkgp=ymev=p

e Relation de dispersion :
2

2
mgyC
0F = kipc? = (5] o B2 = (o ¢+

5. Interprétation et généralisation
e L’oscillation en temps propre devient une onde plane spatio-temporelle sans postulat.
e Invariant d’intervalle et phase quantique wo T sont préservés.

Conclusion

Appliquer les transformations de Lorentz a une oscillation propre génére naturellement la forme
plane de la fonction d’onde, les relations de Broglie et la dispersion relativiste sans hypothése
ad hoc.
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Annexe B

Mécanique quantité et probabilité

En mécanique quantique, la fonction d’onde W (x,t) est une amplitude de probabilité, pas une
probabilité en elle-méme. Voici pourquoi on prend le carré (ou plus précisément le module au
carré) de W pour obtenir une probabilité :

1. Amplitude complexe et signe
WY peut étre un nombre complexe ; si on prenait simplement W (x,t) comme probabilité, on
obtiendrait des valeurs qui peuvent étre négatives ou comporter une partie imaginaire, ce
qui n’a pas de sens pour une probabilité.

2. Module au carré garantissant une quantité réelle et positive
Le module au carré

[P(x )% = P*(x,t) P(x,t)

est toujours un nombre réel et non négatif. C'est donc la quantité naturelle pour représenter une
densité de probabilité en x.

3. Regle de Born
Cette prescription (« probabilité = amplitude au carré ») est connue sous le nom de régle
de Born. Elle garantit que :

o Lintégrale de |¥|? sur tout I'espace vaut 1 (condition de normalisation) ;

o Lorsqgu’on a un systeme en superposition de plusieurs états, les probabilités
s’ajoutent de fagon cohérente (interférences possibles au niveau des amplitudes,
mais somme des |¥|? seule donne la probabilité finale).

4. Exemple simple
Si W est une superposition de deux « pics » localisés Aet B :

Y =cpy + cpipp

Alors

W12 = lea |2 1pal? + lea 2 1wp1? + 2R (e cs i 5]

Les termes croisés expliquent les interférences, mais les “poids” des positions A et B restent
donnés par |c4|? et |cg|?. Les coefficients ¢4 et cz devraient &tre normalisés (|c,|% + |cg|?=1).

En résumé, on éléve la fonction d’onde au carré (module au carré) pour passer d’'une amplitude
(qui peut étre positive, négative ou complexe) a une probabilité (qui doit étre réelle, positive et
normalisable a 1). C’est le postulat fondamental (régle de Born) qui relie le formalisme
mathématique de la fonction d’onde aux résultats expérimentaux.
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Annexe C

¢k perplexity

Pourquoi le fait d’élever au carré la fonction d’onde aboutit a une probabilité ?

1. Origine : la fonction d’onde est complexe

En mécanique quantique, I'état d’une particule est décrit par une fonction d’'onde W(x, t), qui est
en général une fonction complexe.
Exemple :

Y(x, t) = Aellkx—@b)

2. Interprétation physique : I’hypothése de Born

En 1926, Max Born a proposé que la probabilité de trouver la particule en un point x a l'instant ¢t
est donnée par le module au carré de la fonction d’onde :

P(x,t) = |¥(x,t)|?
C’est-a-dire :
[P, )% =¥ (x, 1) - ¥ (x,1)

ol P~ est le conjugué complexe de V.

3. Pourquoi le module au carré ?

e Le module au carré est toujours réel et positif, ce qui est indispensable pour une
probabilité.

e Lafonction d’onde, étant complexe, contient des informations sur 'amplitude (reliée a la
probabilité) et la phase (reliée aux interférences).

e Seul le module au carré a une signification physique directe : il donne la densité de
probabilité de présence.

4. Lien mathématique : exemple

Prenons W(x) = a + ib (avec a et b réels).
Alors :
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|W(x)|? = (a +ib)(a — ib) = a? + b?
C’est toujours un nombre réel positif.
5. Pourquoi pas seulement le réel ou I'imaginaire ?

e Sion prenait seulement la partie réelle ou imaginaire, on pourrait obtenir des valeurs
négatives ou nulles, ce qui n’a pas de sens pour une probabilité.

e Le module au carré, en revanche, garantit que la somme (ou l'intégrale) des probabilités sur
tout I'espace peut étre normalisée a 1.

6. Résumé et justification physique

C’est le module au carré de la fonction d’onde qui, selon I'interprétation de Born, donne la
probabilité de présence d’une particule, car cette opération élimine la partie imaginaire et
fournit une grandeur réelle et positive, adaptée a une interprétation probabiliste.

En bref :
e Lafonction d’onde est complexe (contiens « i »).
e Le module au carré donne une densité de probabilité réelle et positive.

e (’est pourquoion l'utilise pour relier la théorie quantique aux probabilités mesurées
expérimentalement.
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Annexe D

Fonction d’onde gaussienne et principe d’incertitude
CHATGPT

Exemple de la fonction d’onde gaussienne et du principe d’incertitude

Pour une fonction d’onde gaussienne centrée en O et de largeur caractéristique oy :
x2
P(x) = ;1 e[‘(wx)]
(2may?)*
on montre pas a pas que :

Ax Ak = 1/2

1. Définition des incertitudes
Position :

Ax = [(x?) — (x)?
Nombre d’ondes :

Ak = (k?) — (k)?

Les espérances sont définies par :

(x) = [ x|¥()[* dx
et

(x?) = flell’(x)lzdx

de méme pour (k) et (k?) en espace des impulsions avec ¢(k), la transformée de Fourier de y(x).

2. Calcul de Ax

Normalisation :

J¥@PPdxe =1

Espérance de x :

Par symétrie de la gaussienne centrée,
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(x) =0

Espérance de x?:

+00 1 xZ
(x?) =f x? <—> ex [——] dx = o,°
—00 1/27'[0')(2 P (ZO'XZ)
Ecart-type :

Ax = J(x2)— 0= oy

3. Calcul de Ak

Transformée de Fourier :

(o2 /*

#() =~ expl-o2k?]

Espérance dek :

Par symétrie, (k) =0

Espérance de k? :

\ 2042 1
(k?) = sz < \/% )Xexp[—ZaXZkz] ah = oo

Ecart-type :

Ak = J(k?) = 209

4. Produit des incertitudes

Ax Ak = [ ! ]—1
A= 2ol T 2

5. Interprétation

Cette valeur minimale (1/2) est la borne inférieure de I'inégalité de Heisenberg :

Ax Ak = 1/2

Seule la gaussienne réalise exactement cette borne (on dit qu’elle « sature » I'inégalité).

Toute autre forme de paquet d’ondes donnera Ax 4k > 1/2.
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Ainsi, la gaussienne est le paquet d’ondes optimal pour minimiser simultanément l'incertitude

de position et de nombre d’onde.

1. Densité de probabilité spatiale pour deux paquets gaussiens de largeurs différentes (o

petit vs. o grand) :

o Plus o est petit > paquet tres localisé (fleche courte) = incertitude en position

faible.
o Plus o est grand = paquet étalé - incertitude en position forte.
2. Densité de probabilité spectrale (espace des nombres d’onde) :
o Pour o petit - spectre trés large (incertitude en k grande).
o Pour o grand - spectre étroit (incertitude en k petite).

Ces deux images montrent visuellement que réduire I'incertitude en position (paquet étroit)

augmente celle en nombre d’onde (spectre large), et vice versa.

Densité de probabilité spatiale
0.40 0=10
— 0=23.0
0.35}
0.30}

0.25F

2

X 0.20f

=3
0.15}
0.10}
0.05

0.00f

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Position x (m)
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Densité de probabilité spatiale
e Paquet étroit (0=1, ligne jaune) : pic haut et étroit = forte localisation, Ax petit.

e Paquet large (0=3, ligne orange) : pic plus bas et large = moins localisé, Ax grand.

Zoom du spectre (k € [-1,1])

1.0 o=1.0
— 0=3.0

0.8t

o
o
T

Spectre normalisé
e
i

0.2t

0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Nombre d'onde k (rad-m-1)

Densité de probabilité spectrale

e Paquet étroit (0=1) : spectre tres large en k = Ak grand.

e Paquet large (0=3) : spectre resserré autour de k=0 = Ak petit.
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