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Le principe de moindre action et l’origine du Lagrangien1   
 

En 1744, en s’inspirant du principe de moindre temps de Fermat (1601-1665) (en optique 

géométrique), Pierre-Louis Moreau de Maupertuis (savant français né en 1698 et mort en 1759) 

a établi son principe dit : principe de moindre quantité d’action, selon lequel « la nature 

choisissait, parmi toutes les possibilités qui s’offraient à elle, celle qui était la plus efficace 

(Mém. Acad. Berlin, 1744) ».  

Maupertuis voit le mouvement d’un corps rigide dans sa globalité: il ne considère que les points 

de départ et d’arrivée, contrairement à Newton, qui procède, à l’aide de son équation 

différentielle de mouvement, de proche en proche pour déterminer la trajectoire du corps en 

mouvement, sous l’effet de forces.  

Pour Maupertuis, cette efficacité exprimait, dans le cas du mouvement, une trajectoire qui 

minimise l’intégrale de la quantité de mouvement sur le trajet et la traduisait 

mathématiquement comme suit:  

Si on considère le mouvement d’un corps rigide de masse m entre deux points A en temps tA et 

B en temps tB pour une énergie totale E donnée (constante durant le mouvement), la 

trajectoire physique sélectionnée par la nature est celle pour laquelle la grandeur physique 

(appelée action et inventée par Maupertuis lui-même): 𝑨 = ∫ 𝒎𝒗 ⋅ ⅆ𝒍
𝑩

𝑨
  

 est minimale, ou mv est la quantité de mouvement (introduite par Descartes) et dl un 
élément d’espace entre les deux points A et B. Cette forme est valable lorsque 
l’énergie est conservée tout au long du trajet.. 

 

 

Il a écrit dans ce sens : « lorsqu’il arrive quelque changement dans la nature, la quantité 
d’action employée pour ce changement est toujours la plus petite qu’il soit possible » 
(principe d’optimalité de la nature). 

1.  Formalisme de Lagrange: équation d'Euler-Lagrange par le calcul variationnel : 
https://www.youtube.com/watch?v=RILKEmoonA8&list=PLe3sI3PvCIaIErnLE96Ke7sjdgvHD88rI&index=14 

https://www.youtube.com/watch?v=RILKEmoonA8&list=PLe3sI3PvCIaIErnLE96Ke7sjdgvHD88rI&index=14
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 En remarquant que  

ⅆ𝒍 =   𝒗 ⅆ𝒕  

On obtient alors  

𝑨 =   ∫ 𝒎𝒗
𝒕𝑩

𝒕𝑨

⋅ 𝒗 ⅆ𝒕  =   ∫ 𝒎𝒗𝟐 ⅆ𝒕
𝒕𝑩

𝒕𝑨

 =   ∫ 𝟐 𝑻 ⅆ𝒕
𝒕𝑩

𝒕𝑨

  

T énergie cinétique de la masse.  

 

 

L’action de Maupertuis dépend de la seule énergie cinétique du corps, ce qui peut sembler 
un peu restrictif d’un point de vue de la représentativité de l’action de Maupertuis du 
mouvement puisque le mouvement d’un corps rigide prend source dans la variation de son 
énergie potentielle. 

 

C’est ainsi que quelques années plus tard, Leonard Euler (1707-1783) proposa une autre 
forme de la grandeur action, en se basant sur l’idée que les corps rigides en mouvement 
tendent à adopter un état où l’énergie potentielle est minimale. L’action d’Euler dépend 
donc de l’énergie potentielle du corps rigide en mouvement. Euler généralise le 
raisonnement en montrant que l’on peut chercher l’extremum d’intégrales plus générales, 
ouvrant la voie à la forme T−U adoptée ensuite par Lagrange. 

 

Vint alors Joseph-Louis Lagrange (1736-1813), qui a pu concilier les deux points de vue, en 
proposant, par intuition, comme action l’intégrale de la différence entre l’énergie 
cinétique et l’énergie potentielle du corps rigide en mouvement. 

 

𝑺 =  ∫ [𝑻 − 𝑼]
𝒕𝑩

𝒕𝑨

ⅆ𝒕  

 

𝑳 =   [𝑻 − 𝑼] 𝑒𝑠𝑡 𝑙𝑒 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑒𝑛 𝑑𝑢 𝑠𝑦𝑠𝑡è𝑚𝑒 

 

Remarque : Lagrange lui-même a donné la notation Z à la quantité T-U, et ce n’est qu’après, 
que le Lagrangien ait pris la notation L, en hommage à Lagrange. 

En fait, Lagrange a bien compris que le mouvement d’un corps rigide (avec une énergie 
totale conservée) est le résultat de la compétition entre deux grandeurs physiques que sont 
l’énergie cinétique et l’énergie potentielle: un corps en mouvement voulant augmenter son 
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énergie cinétique voit son énergie potentielle diminuer. Il a sûrement remarqué que s’il 
proposait comme action l’intégrale de la somme des énergies cinétique et potentielle, cela 
n’ajouterait rien au problème, puisque l’énergie totale est supposée constante !!! 

 

Lagrange annonça en 1788 son principe de moindre action selon lequel le chemin 
physique que la nature choisit pour un corps rigide passant d’un point A au temps tA 
vers un point B au temps tB est celui pour lequel l’action S est minimale (stationnaire). 

 

En effet, on peut établir un lien entre l’expression de l’action de Maupertuis A et celle 
proposée par Lagrange S en faisant remarquer que :  

 

𝟐𝑻 =   𝑻 + 𝑻 = 𝑬 − 𝑼 + 𝑻  

 

𝑨 =   ∫ 𝟐𝑻
𝒕𝑩

𝒕𝑨

ⅆ𝒕  =   ∫  (𝑬 + 𝑻 − 𝑼) ⅆ𝒕
𝒕𝑩

𝒕𝑨

 =    ∫  (𝑬) ⅆ𝒕
𝒕𝑩

𝒕𝑨

+ ∫  (𝑻 − 𝑼) ⅆ𝒕
𝒕𝑩

𝒕𝑨

 

 

Puisque l'énergie totale E est constante dans un système conservatif, nous pouvons donc 
écrire : 

𝑨 =   𝑬(𝒕𝑩 − 𝒕𝑨) + 𝑺 

Le terme E (tB – tA ) est identique pour toutes les trajectoires possibles entre les points A et 
B. Cela signifie qu'il ne permet pas de distinguer entre les différentes trajectoires, car il 
n'affecte pas la minimisation de l'action. Minimiser A revient à minimiser S. Par 
conséquent, nous pouvons le considérer comme une constante et l'omettre de l'expression 
de l'action lorsque nous cherchons à déterminer la trajectoire réelle. Ainsi, à une constante 
près, nous retrouvons : 

𝑨 =  𝑺 + 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 

Prenons maintenant le cas simple d’un Lagrangien L qui ne dépend que d’une seule 
coordonnée généralisée, 𝑳(𝒒, 𝒒̇) et appliquons les résultats de calcul variationnel ci-
dessous: 

𝑺[𝒒(𝒕)] =   ∫ 𝑳(𝒒, 𝒒̇)
𝒕𝑩

𝒕𝑨

ⅆ𝒕  

pour que S[q(t)] soit stationnaire (maximal ou minimal), la condition suivante doit être 
vérifiée : 
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ⅆ

ⅆ𝒕
  (

𝝏𝑳

𝝏𝒒̇
) −

𝝏𝑳

𝝏𝒒
= 𝟎 

 

C’est l’équation d’Euler-Lagrange pour un système conservatif à un degré de liberté. Sa 
résolution permet d’obtenir l’expression de la coordonnée généralisée q(t) représentant le 
mouvement du corps. 

 

Dans le cas d’un système conservatif à n degré de liberté, on aura n équations 
différentielles permettant de définir les expressions des q(t) : 

 

ⅆ

ⅆ𝒕
  (

𝝏𝑳

𝝏𝒒𝒊̇
) −

𝝏𝑳

𝝏𝒒𝒊
= 𝟎 

 

Définition de l’action : 

𝑺 =   ∫ 𝑳(𝒒𝟏(𝒕), … 𝒒𝒏(𝒕), 𝒒̇𝟏(𝒕), … 𝒒̇𝒏(𝒕), 𝒕)
𝒕𝟐

𝒕𝟏

ⅆ𝒕  

 

Et selon une seule coordonnée 

𝑺 =   ∫ 𝑳(𝒒𝟏, 𝒒̇𝟏, 𝒕)
𝒕𝟐

𝒕𝟏

ⅆ𝒕  

 

 

L’action S est l’intégrale du lagrangien dans le temps pris entre un certain temps t1 et un 
certain temps t2. Le lagrangien est fonction des coordonnées q1 à qn dépendantes du temps 
et des vitesses dépendantes du temps et le lagrangien peut aussi dépende explicitement du 
temps.  

Le principe de la moindre action stipule que le mouvement suivi par le système et qui donc 
respecte les équations de Lagrange est celui qui minimise l’intégrale appelée action. 
 
Nous cherchons une formule qui minimise l’action. Nous cherchons un extremum. 
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Soit ɣ une trajectoire physique.  

 
Soit ɣε une variation de ɣ avec comme coordonnées 
 

ɣ𝜀(𝑡) = (𝑞1(𝑡, 𝜀), … , 𝑞̇
𝑛(𝑡, 𝜀))    

L’action est 

𝑆(ɣ
𝜀
) =   ∫ 𝐿(𝑞𝑖(𝑡, 𝜀), 𝑞̇𝑖(𝑡, 𝜀), 𝑡)

𝑡2

𝑡1

𝑑𝑡  

 

𝛿𝑆 = 𝑆(ɣ
𝜀
) − 𝑆(ɣ) =   ∫ 𝐿(𝑞𝑖(𝑡, 𝜀), 𝑞̇𝑖(𝑡, 𝜀), 𝑡)

𝑡2

𝑡1

𝑑𝑡 −  ∫ 𝐿(𝑞𝑖(𝑡), 𝑞̇𝑖(𝑡), 𝑡)
𝑡2

𝑡1

𝑑𝑡  

Cette différente est très petite, alors nous pouvons faire un développement limité au 
premier ordre en qi . Ce qui revient à dire que la dérivée est nulle. 
 
Principe de moindre action -> On impose que 𝜹𝑺 = 𝟎 au premier ordre en 𝜹𝒒𝒊 
 
Principe de moindre action -> Pour toute ɣε variation de ɣ 
  

(
ⅆ (𝒔(ɣ𝜺))

ⅆ𝜺
) |𝜺=𝟎 = 𝟎  

La dérivée de 𝑆(ɣ
𝜀
) par rapport à ε est : 

 

(
𝑑 (𝑠(ɣ𝜀))

𝑑𝜀
) |𝜀=0 = ∫ (

𝜕𝑞𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞𝑖
+

𝜕𝑞̇
𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞̇
𝑖
 
) |𝜀=0  𝑑𝑡

𝑡2

𝑡1
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Intégration par parties pour éliminer les dérivées de 𝒒̇𝒊 .  
Le but est de se débarrasser du terme contenant 𝑞̇𝑖  pour obtenir une expression dépendant 
uniquement de 𝑞𝑖. 
 
On utilise l'identité suivante : 

𝑑

𝑑𝑡
 (

𝜕𝑞𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞̇𝑖 
)  =  

𝜕𝑞̇𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞̇𝑖 
+ 

𝜕𝑞𝑖

𝜕𝜀 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) 

 
Cette identité permet de réécrire 

  
𝜕𝑞̇𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞̇𝑖 
 =  

𝑑

𝑑𝑡
 (

𝜕𝑞𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞̇𝑖 
)  − 

𝜕𝑞𝑖

𝜕𝜀 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) 

 
  

(
𝑑 (𝑠(ɣ𝜀))

𝑑𝜀
) |𝜀=0 = ∫ (

𝜕𝑞𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞𝑖
+

𝑑

𝑑𝑡
 (

𝜕𝑞𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞̇
𝑖
 
) −

𝜕𝑞𝑖

𝜕𝜀 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇
𝑖))  𝑑𝑡

𝑡2

𝑡1

 

Quand nous avons une variation, l’intégrale d’une dérivée aux bornes t1 et t2. Ce terme-là ne 
peut pas dépendre de ε. ε = 0 aux bornes.  

∫
𝑑

𝑑𝑡
 (

𝜕𝑞𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞̇𝑖 
) 𝑑𝑡

𝑡2

𝑡1

 

 
Théorème fondamental de l’analyse 
 L’intégrale d’une dérivée est la différence des bornes. 
 

∫  
𝑑

𝑑𝑡
 (𝑓(𝑡)) 𝑑𝑡

𝑏

𝑎

 = 𝑓(𝑏) − 𝑓(𝑎) 

 
Ici 𝑓(𝑏) = 𝑓(𝑎), 𝑐e qui implique  
 

∫
𝑑

𝑑𝑡
 (

𝜕𝑞𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞̇𝑖 
) 𝑑𝑡

𝑡2

𝑡1

= 0 

 
 
Donc 

(
𝑑 (𝑠(ɣ𝜀))

𝑑𝜀
) |𝜀=0 = ∫ (

𝜕𝑞𝑖

𝜕𝜀 

𝜕𝐿

𝜕𝑞𝑖
−

𝜕𝑞𝑖

𝜕𝜀 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇
𝑖))  𝑑𝑡

𝑡2

𝑡1
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Écrit autrement  

(
𝑑 (𝑠(ɣ𝜀))

𝑑𝜀
) |𝜀=0 = ∫

𝜕𝑞𝑖

𝜕𝜀 
(

𝜕𝐿

𝜕𝑞𝑖
−

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇
𝑖))  𝑑𝑡

𝑡2

𝑡1

 = 0 

 

Vrai pour toute variation de ɣ  

Implique que 

(
𝜕𝐿

𝜕𝑞𝑖
−

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
))  = 0 

 

C’est l’équation d’Euler-Lagrange pour un système conservatif. 

 

𝜕𝐿

𝜕𝑞𝑖
=

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
)  

 

 

L'action n'est pas toujours minimisée ; elle peut correspondre à un maximum ou un 
point selle. Le fait que la variation première soit nulle ne garantit qu'un extremum (un 
point stationnaire). 


