
 

Richard Morel                                           La relativité restreinte      1 

La relativité restreinte 

Introduction 

Ce document propose une introduction à la théorie de la relativité restreinte, un pilier 

de la physique moderne qui a radicalement transformé notre compréhension de l'espace, du 

temps et de la matière. Conçu pour être accessible tout en restant rigoureux, il s'adresse à toute 

personne désireuse de comprendre les fondements et les implications de cette théorie 

fascinante. 

Plutôt que de se limiter à l'approche algébrique traditionnelle, ce cours offre une 

perspective complémentaire, résolument géométrique, pour en révéler la structure profonde. 

L'originalité de la démarche réside dans l'utilisation systématique de la trigonométrie 

hyperbolique comme outil unificateur. 

Cette méthode est plus simple qu'elle n'y paraît. En pratique, les fonctions 

hyperboliques (cosh, sinh, tanh) se manipulent avec la même facilité que leurs cousines 

circulaires (cos, sin, tan), comme le rappellent les annexes de ce document. De plus, l'accès à 

des outils modernes comme le langage Python ou les intelligences artificielles rend aujourd'hui 

ces calculs hyperboliques quasi instantanés, levant toute difficulté pratique. L'avantage de cette 

méthode est qu'elle offre une clarté conceptuelle remarquable : 

• Les transformations de Lorentz sont interprétées comme une véritable rotation 

hyperbolique des axes de l'espace-temps de Minkowski. 

• La composition des vitesses, souvent peu intuitive, devient une simple addition des 

angles hyperboliques. 

• La dynamique relativiste est entièrement intégrée à ce cadre, où les composantes du 

quadrivecteur énergie-impulsion s'expriment naturellement avec les fonctions cosh(θ) 

et sinh(θ). 

Le parcours proposé est progressif. Il débute par la célèbre expérience de pensée de 

l'horloge à lumière pour introduire la dilatation du temps, pour ensuite construire, étape par 

étape, l'ensemble de l'édifice théorique. Vous explorerez les quadrivecteurs, objets naturels de 

l'espace-temps, pour aboutir à la fameuse relation 𝑬𝟎 = 𝒎𝟎𝒄𝟐 et à ses applications dans le 

monde des collisions de particules. 

En suivant ce fil conducteur géométrique, le lecteur est invité à porter un nouveau 

regard sur la nature de la réalité physique, où l'espace et le temps sont intimement liés en un 

seul et même continuum. 
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L'horloge à lumière  

C’est un fait expérimental et c'est la base de la relativité restreinte, la vitesse de la 

lumière est constante. Que la mesure de la vitesse soit exécutée à partir d’un référentiel 

immobile par rapport à la source de lumière ou d’un référentiel en mouvement uniforme 

rectiligne par rapport à la source de lumière. C’est ce qu’on appelle l’invariance de la vitesse de 

la lumière. Ceci a été démontré, entre autres, par l’expérience de Michelson et Morley : 

https://fr.wikipedia.org/wiki/Exp%C3%A9rience_de_Michelson_et_Morley.  Cette constance a 

un impact considérable sur les mesures des phénomènes physiques et ce qui en découle. 

La mesure du temps et des longueurs est dépendante de la condition de déplacement 

relatif des référentiels. 

La vitesse c est une vitesse limite que rien ne peut dépasser. Ce n’est pas une propriété 

de la lumière, mais une propriété de l’espace-temps. 

Pour appréhender ces phénomènes, introduisons une « horloge-lumière » dans le 

référentiel R0. L’horloge-lumière est un dispositif formé de deux miroirs séparés d’une distance d 

et entre lesquels un signal lumineux effectue des allers-retours, générant une série de « tic » au 

point O0 de période Τ = 2𝑑/𝑐 dans le référentiel R0. 

M 

 d 

             R0 

O0 

M 

  d2+ (Δ x/2)2 

             R1 

                                                                     O1                    Δ x                  P1 

M 

                                                 l                  d2+ (Δ x/2)2 

             R2 

                                                                     P2                   Δ x                  0 2 

Animation : https://liensphysique.science.blog/introduction-a-la-relativite-restreinte-2/ 

https://fr.wikipedia.org/wiki/Exp%C3%A9rience_de_Michelson_et_Morley
https://liensphysique.science.blog/introduction-a-la-relativite-restreinte-2/
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 Prenons un deuxième référentiel: R1, qui se déplace vers la gauche par rapport à R0. à 
vitesse constante. Vue depuis ce référentiel, la trajectoire du signal lumineux de R0  parcourt une 

distance plus grande que dans R0. Soit : 2  d2+ (Δ x/2)2    . Pour ce référentiel, la lumière se 
déplace à la vitesse c dû à l’invariance de la vitesse de la lumière. 
 
 Le résultat observé serait identique si c’est  R0. qui se déplace vers la droite par rapport à 
R1. 
 

Prenons un troisième référentiel, R2, qui se déplace vers la droite par rapport à R0. à 
vitesse constante. Vue depuis ce référentiel, la trajectoire du signal lumineux de R0  parcourt une 

distance plus grande que dans R0. Soit : 2  d2+ (Δ x/2)2    . Pour ce référentiel aussi, la lumière se 
déplace à la vitesse c dû à l’invariance de la vitesse de la lumière. 

 
Évaluons la distance parcourue par la lumière dans chacun des trajets et élevons au carré : 

 

• R0:  c Δ t0 = 2d soit : c2 Δ t0
2 = 4d2  

 

• R1 :  c Δ t1 = 2 d2+ (Δ x1/2)2     soit : c2 Δ t1
2 = 4d2+ (Δ x1)2     

 

• R2 :  c Δ t2 = 2  d2+ (Δ x2/2)2     soit : c2 Δ t2
2 = 4d2+ (Δ x2)2     

  

Il est clair que dans tous les référentiels l’identité suivante est vérifiée : 
 

c2 Δ t1
2 - (Δ x1)2   = c2 Δ t2

2 - (Δ x2)2   = 4d2 = c2 Δ t0
2  

 
 En généralisant  c2 Δ t2 - (Δ x)2    =  4d2 

 

c2 Δ t2 - (Δ x)2    = c2 Δ t0
2 

 

On conclut donc à l’invariance de c2 Δ t2 - (Δ x)2    par changement de référentiel.  
 
La relation d’invariance se généralise en incluant les coordonnées passives y et z à l’intervalle 
d’espace-temps : 

c2 Δ t2 – (dx2  + dy2  + dz2) = à un invariant 
 

Si  «c2 Δ t2» augmente  (dx2  + dy2  + dz2) augmente et vice versa.  
 

On définit comme « temps propre »  (prononcé tau), le temps mesuré pour un référentiel par 

une horloge immobile par rapport à ce référentiel. Ici, le temps propre est le temps pour un 
observateur immobile par rapport à R0, soit Δ t0. 

 

c2 Δ t2 – (dx2  + dy2  + dz2) = c2 Δ t0
2 

c2 Δ t2 – (dx2  + dy2  + dz2) = c2 Δ 2 

On conclut de cette équation : 
Que l’espace et le temps forment un continuum. Un déplacement dans l’espace, 
implique une dilatation du temps. C’est le continuum espace-temps à 4 dimensions. 
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De la situation présentée, nous pouvons déduire diverses formules. 
 Pour un demi-battement d’horloge: 

 = d/c 

 
 Vue du référentiel en mouvement, nous définissons: 
 

l  ≡  d2+ (Δ x1/2)2        =>    t = l/c 

 
 En prenant V comme vitesse de déplacement d’un référentiel, nous obtenons : 

 

 l 2
 = d2+ (Δ x/2)2     

 

 l 2
 = d2+ V2 t2     

 

 l 2
 - V 2 t2    = d2 

 

 l 2
/c2 - V 2 t2/c2   = d2/c2 

 

 t2 - V 2 t2/c2   = d2/c2 

 

 (1 - V 2/c2 )  t2= d2/c2 

 

 (1 - V 2/c2 )  t2= 2 

 

 t = / (1 - V 2/c2 )   

 

    En définissant     1/ (1 - V 2/c2 )         nous obtenons   t =       

 
 

Le coefficient  est appelé facteur de Lorentz. Comme   1, on en déduit le phénomène de 

dilatation du temps : t   

 

Dans les transformations de Lorentz, une variable  est définie comme étant V /c. Nous y 
reviendrons. 
 

    V /c 
 
« Qu’est-ce que le temps ? 

Le temps est l'une des quatre dimensions de l'espace-temps ; il se manifeste sous forme de 
durée séparant deux événements. Pour quantifier cette durée, on la compare au nombre 
d'oscillations d'un système cyclique stable et reproductible – un étalon d'horloge (pendule, 
quartz, transition atomique du césium, etc.). 
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• Temps propre ( ) : durée enregistrée par l'horloge qui accompagne les événements, 
c'est-à-dire vécue localement le long de sa ligne d'univers (trajectoire d'un objet à 
travers l'espace-temps à 4 dimensions). 

• Temps de l'observateur (t) (ou temps impropre/coordonné): durée qu'un autre 
référentiel attribue aux mêmes événements en comptant les oscillations de sa propre 
horloge. 

 
Parce que le temps est une dimension géométrique de l'espace-temps, la relativité restreinte 
montre que ces deux mesures diffèrent dès qu'il existe une vitesse relative entre les référentiels. 
Dire que « le temps ralentit » signifie alors qu'au regard d'un observateur dans un autre 
référentiel en mouvement par rapport au référentiel propre, tous les processus physiques – 
horloges, réactions chimiques ou nucléaires, processus biologiques – évoluent à un rythme plus 
lent du point de vue de cet observateur, tandis que localement, dans le référentiel propre, rien ne 
change. 

 

Représentation de deux référentiels inertiels en mouvement rectiligne 
relatif un par rapport à l’autre  

 
 

On considère deux référentiels R et R’, le deuxième référentiel R’ étant animé de la 
vitesse constante v par rapport au référentiel R. 

 
                R                                                       R’ 

 
  
  Image source : https://fr.wikipedia.org/wiki/Relativité_restreinte#/media/Fichier:RR_referentiel1.png 

 

 

Le continuum espace-temps n’est pas correctement rendu par cette représentation ; le 

diagramme d’espace-temps de Minkowski est mieux approprié.  

https://fr.wikipedia.org/wiki/Relativité_restreinte#/media/Fichier:RR_referentiel1.png
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Diagramme d’espace de Minkowski 
 

On définit l’espace-temps comme un continuum à 4 dimensions formé par l’ensemble 
des événements. Pour les aspects graphiques, on se limitera à une seule dimension spatiale en 
x. En ordonnée, on retrouvera le temps multiplié par c, de sorte que l’on travaille avec des 
grandeurs de même dimension (c × temps équivalant à une distance). 

  
  

   R 

 ct V R’ ct’ 
 v = -c  v = c 

V t 
 
 
 

                                                                     x 
 
 
 
 
 
 
 
 
 
 

Deux lignes à 45 degrés dessinent la trajectoire, dans le temps et dans l’espace, d’un 
flash lumineux émis à partir du point d’origine O. Le déplacement sur l’axe X est égal au 
déplacement sur l’axe Y. « Y » est le temps multiplié par c. X est V multiplié par le temps. Pour la 
lumière, v = c. Cette trajectoire est aussi appelée la ligne d’univers du photon. En tenant compte 
des 3 dimensions spatiales, la lumière forme un cône de lumière.  

 
La ligne d’univers d’une particule en mouvement rectiligne uniforme par rapport au 

référentiel R est une droite de pente c/V, ou V est la vitesse de la particule. R’ est le référentiel 

immobile par rapport à la particule, qui suit la particule dans son mouvement. Il est aussi 
nommé son référentiel propre.  

 
L’axe V est aussi l’axe ct de la particule, nous le notons ct’. Comme la particule a une 

vitesse nulle dans le référentiel R’, son déplacement s’effectue que sur l’axe ct’ dans ce 

référentiel. 
 
Le référentiel R’ est tout référentiel en mouvement rectiligne uniforme par rapport au 

référentiel R. Ce pourrait être un train, un avion, une fusée, etc. par rapport au sol. Ou l’inverse, 

par exemple, la terre par rapport à une fusée. Pour l’astronaute immobile dans le référentiel de 
la fusée, c’est la terre qui se déplace et le référentiel propre de la terre devient le référentiel R’. 
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Rotation hyperbolique des axes de référence 
 
Dans un système au repos les axes ct et x sont perpendiculaires. La trajectoire du flash lumineux 
émis à partir du point d’origine O est toujours à égale distance sur l’axe x et –x. 
 

 
 
Dans un référentiel R’ qui se déplace par rapport à R, les axes du référentiel R’, vue à partir du 

référentiel R, sont repliés. La transformation vers le référentiel R' entraîne simultanément une 

rotation de l'axe temporel ct' et une rotation inverse de l'axe spatial x'.

 
 
En appliquant la rotation, l’axe ct’ est à égale distance du trajet de la lumière selon –x’ et x’. 
Malgré le déplacement du référentiel R’, la lumière a conservé sa vitesse c pour ce référentiel. 

Plus la vitesse de R’ est grande, plus les axes se replient vers la trajectoire c.  

 
Voir l’animation : Relativité restreinte : l'espace qui fabrique du temps, de Sciencesilencieuse  

https://www.youtube.com/watch?v=jSy3EsPW1IY&list=PLrfG_Hi1Epg6F-O9ugl6lmZ47iSKAN2El 

o 

R 

https://www.youtube.com/watch?v=jSy3EsPW1IY&list=PLrfG_Hi1Epg6F-O9ugl6lmZ47iSKAN2El
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Rotation hyperbolique 

 La formule « c2 Δ t2 – (dx2  + dy2  + dz2 ) = constante » est de type hyperbolique du genre 
« a2- b2 = c2 ».  

 

Graphique de l’évolution de ct et de x selon la vitesse relative des référentiels 

On trace les courbes de l’évolution de ct et de x selon la vitesse relative des référentiels 

Évolution de ct :   (ct)2 - x2 = (ct’) 2 – x’ 2 = 1 en prenant ct’ = 1 et x’ = 0,  point R’ = (1,0)  

(ct)2 - x2 = 1 

(ct)2  = 1 + x2 

ct  = 1 + x2 

Les lignes rouges, bleues et vertes ont numériquement la même valeur.  

Évolution de x :   (ct)2 - x2 = (ct’) 2 – x’ 2 = -1 en prenant ct’ = 0 et x’ = 1,  point R’ = (0,1) 

(ct)2 - x2  = -1 

(ct)2  + 1 = x2 

x2  = (ct)2  + 1 

x  = (ct)2  + 1 
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En résumé 

 

 

Des observateurs aux vitesses 
différentes passent tous à l’origine au 
même instant, pris comme temps 0. 
Au bout de 3 secondes ( à leur 
montre ), ils notent l’événement sur 
leur ligne d’univers. Ces événements, 
reliés entre eux, dessinent une 
courbe : une hyperbole. 
 
Pour une rotation hyperbolique, 
l’hyperbole est l’équivalent du cercle 
dans une rotation circulaire. Un point 
du cercle est toujours à la même 
distance du centre, soit r le rayon. 
Dans une rotation hyperbolique, un 
point de l’hyperbole est toujours à la 
même distance de l’origine pour 
chaque observateur. 

 

  

 

On peut aussi demander à ces 
observateurs de marquer, à l’instant 
zéro sur leur ligne d’univers, une 
distance à l’origine de 3m. On obtient 
à nouveau une hyperbole. 
 

 
Ref: Relativité restreinte 5 : hyperboles,  de Sciencesilencieuse: 
https://www.youtube.com/watch?v=omKgmrTK66s&list=PLrfG_Hi1Epg6F-
O9ugl6lmZ47iSKAN2El&index=5 

https://www.youtube.com/watch?v=omKgmrTK66s&list=PLrfG_Hi1Epg6F-O9ugl6lmZ47iSKAN2El&index=5
https://www.youtube.com/watch?v=omKgmrTK66s&list=PLrfG_Hi1Epg6F-O9ugl6lmZ47iSKAN2El&index=5
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Le temps propre  = 1 s à l’origine de R décrit une branche d’hyperbole H lorsque V 

varie. 
  R 

 
   

 La formule « c2 Δ t2 – (dx2  + dy2  + dz2 ) = constante » étant de type hyperbolique, nous 
pouvons appliquer la trigonométrie hyperbolique aux phénomènes de la relativité restreinte 
(voir l’annexe 1). 

Ref : https://fr.wikipedia.org/wiki/Fonction_hyperbolique 
 

 

 

 

 

La durée d’un événement qui a comme valeur «  », aura toujours la valeur «  » dans le 
référentiel propre R’ qui se déplace à vitesse V par rapport au référentiel R. Cette durée sera 

mesurée depuis R comme « cosh ()   » c’est-à-dire plus longue, conformément à la dilatation 

du temps. ()  = atanh (V/c). 

https://fr.wikipedia.org/wiki/Fonction_hyperbolique


 

Richard Morel                                           La relativité restreinte      11 

Prenons par exemple, une particule, le muon, qui a une demi-vie de 2,2 s en laboratoire 
(immobile dans le référentiel du laboratoire, ou se déplaçant à faible vitesse par rapport à c, 

donc  = 2,2 s). On mesurera une durée de demi-vie de 22,4806 s pour les muons produits 
dans la haute atmosphère de la terre par les rayons cosmiques. Ces muons se déplacent à la 
vitesse de 298353454 m/s par rapport au sol. 

 

La demi-vie des muons est donc égale à cosh ()* 
 

La formule du paramètre angulaire de vitesse relativiste  est «  = atanh (V/c) ».  Ce 
paramètre θ est appelé paramètre de rapidité ou rapidité hyperbolique. Voir annexe 1 : 
trigonométrie hyperbolique. 
 

t= (cosh (atanh (298353454/299792458)))*2,2 s = 22,4806 s 
 

Si nous reprenons le calcul avec t = 1/ (1 - V2/c2 )  , nous obtenons 22,4806 s.   

Cosh ()  est donc égale à  

 

Cosh ()  vaut 1 pour lorsque V = 0 et tend vers l’infini quand V s’approche de c. Le temps, vu du 
référentiel R, semble pratiquement s’arrêter pour une particule qui va presque à la vitesse c par 

rapport à R. Cette vitesse est impossible à atteindre pour une particule ayant une masse, car 

elle demande une énergie infinie pour l’atteindre. Nous y reviendrons. Le photon n’a pas de 
masse, c’est pour cela qu’il peut atteindre la vitesse c. C’est sa vitesse dans le vide. 
 
La distance parcourue du muon pour le référentiel terrestre est  

22,4806 s * 298353454 m/s = 6707 m 
 
La simultanéité est non conservée dans un changement de référentiel. 
 

 
Deux événements e1 et e2 qui se produisent simultanément à 2 endroits sur l’axe x’ ne sont pas 
simultanés dans le référentiel R. 
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Approche trigonométrique de la transformation de Lorentz  
 

Formules de transformation des coordonnées du point P lors de changement de référentiel. 
Les référentiels R et R’ sont en mouvement relatif uniforme un par rapport à l’autre. 

 

Comme la rotation des axes découle d’une fonction hyperbolique, la trigonométrie 

hyperbolique s’applique aux équations de transformation. 

 

tanh ()  = Vt/ct = V/c       ()  = atanh (V/c) 
 

R R’→ V  

 

ct = a + b     a = cosh () ct’ b = sinh () x’ 

 

ct = cosh () ct’  +  sinh () x’ 

 
 

x = s + r     s = sinh () ct’ r = cosh () x’ 

 

x = sinh () ct’  +  cosh () x’ 

 
 

ct  cosh () sinh () ct’ 

 =    

x  sinh () cosh () x’ 
 

 
Comme le référentiel R bouge par 

rapport à R’, sa perception de 

l’espace-temps est différente. Chacun 
a un point de vue différent sur un 
même phénomène. L’espace-temps 
étant un continuum, une différence 
dans le temps implique une différence 
dans l’espace et vice versa. Le tout est 
reflété dans les formules ci-contre. 
 
ct est la somme de la composante de 
ct’ et de x’ projetées sur l’axe ct. x est 
la somme de la composante de ct’ et 
de x’ projetée sur l’axe x. 
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En relativité, il n’y a pas de repères absolus, tout est relatif. On peut considérer le 

référentiel R’ comme immobile, le référentiel R se déplaçant dans la direction inverse à la 

vitesse –v, ou un déplacement dans la direction des -x. 

 

tanh ()  = -Vt/ct = -V/c       ()  = atanh (-V/c)   = - atanh (V/c)   
 

-V ←R R’  (inversion de la matrice)  

 

ct’ = a + b     a = cosh () ct b = -sinh () x 

 

ct’ = cosh () ct  -  sinh () x 

 
 

x’ = s + r     s = -sinh () ct r = cosh () x 

 

x’ = -sinh () ct  +  cosh () x 

 
  

ct’   cosh () -sinh () ct 

 =    

x’  -sinh () cosh () x 
 

 
Voir l’annexe 2 pour les correspondances des formules de la transformation de Lorentz 

avec  et  
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Dilatation du temps 
 
Le référentiel R’ est en mouvement relatif uniforme par rapport au référentiel R. Un 

événement se produit au point A. Il a une durée de Δt' dans le référentiel R’. Pour ce référentiel, 

le point A ne bouge pas dans l’espace. 
 
 

 

 

 

 
En appliquant la transformation hyperbolique nous obtenons que le temps soit dilaté dans le 
référentiel R par rapport au temps dans le référentiel R’. 

 
 

cΔt = cosh () cΔt’  +  sinh () Δx’  Δx’  =   (point A fixe dans R’) 

cΔt = cosh () cΔt’   cΔt ≥ cΔt’ Quand Δx’  =   

t  =  cosh () t’ t ≥ t’ t =  1/ (1 – (V2/c2 )    t’ 
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Contraction des longueurs 
 
Le référentiel R’ est en mouvement relatif uniforme par rapport au référentiel R. Une règle est 

immobile dans le référentiel R’. 

 

 

Les lignes d’univers des extrémités de la règle indiquent la position de la règle dans le temps et 
dans l’espace. Dans R’, la règle se déplace dans le temps, mais est immobile dans l’espace.  

 
Pour mesurer la longueur de la règle dans le référentiel R, l’observateur relève la position des 

extrémités de celle-ci simultanément. Pour lui, la règle est en mouvement, disons qu’il prend 

une photo instantanée au moment cty.  Δx sera plus petit que Δx’, d’autant plus petit que la 

vitesse relative des référentiels est grande. 
 
En appliquant la transformation hyperbolique, nous obtenons qu’une distance se contracte dans 
le sens du déplacement pour le référentiel impropre. L’ est la longueur propre (règle au repos). 
 

Δx’  =  -sinh () cΔt + cosh () Δx  cΔt  =   (simultanéité) 

Δx’  =  cosh () Δx  Quand cΔt  =   

L’  =  cosh () L L’ ≥ L L’ =  1/ (1 – (V2/c2 )    L 

L   =  L’/cosh ()    L ≤  L’ L  =   L’ * (1 – (V2/c2 )   
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Revenons à l’exemple du muon 
 

Attribuons au référentiel propre du muon le nom R’. R’ suit alors le muon dans son 

déplacement. Donc le muon est fixe dans ce référentiel, R’ va à la vitesse du muon par rapport à 

la terre. 
 
Cherchons le temps de demi-vie dans le référentiel de la terre et la distance parcourue par le 
muon pour ce référentiel. 
 

cΔt  = cosh () cΔt’  +  sinh () Δx’  Δx’  =   (muon fixe dans R’) 

  Δx  = sinh () cΔt’  +  cosh () Δx’   

     t  =  cosh () t’   

 

Δt' cΔt' Δx' V c 

2,2E-06 s 659,5 m 0 298353454 m/s 299792458 m/s 

 

V/c  = atanh (V/c) cosh (atanh (V/c)) sinh (atanh (V/c)) 

0,995199999 3,014941758 10,21847609 10,16942739 

 

t= cosh() t' 

t =(cosh(3,014941758))*(2,2E-6) 

t = 2,2480647382E-05 s 

 

Δx   = sinh () cΔt’  +  cosh () Δx’  = sinh () cΔt’  

Δx   =(sinh(3,014941758))*(299792458)*(2,2E-6) 

Δx   =6707,2 m 

 

 Mesurer du référentiel terrestre :  t = 22,4806 s  et la distance parcourue 6707,2 m 
 
Pour le muon, la terre s’approche de lui à la vitesse de 298353454 m/s, que vaut pour lui la 
distance 6707,2 m du référentiel de la terre ? 
 

Le référentiel du muon est R, celui de la terre est R’. On applique la contraction des 

longueurs : 
 

L   =  L’/cosh ()    

L   =6707,2 /(cosh(3,014941758))  

L   =  656,4 m 

 

Si on vérifie :  muon*vmuon : 2,2 s * 298353454 m/s =  656,4 m 
 

En résumé :  
Pour un muon se déplaçant à la vitesse de 298353454m/s par rapport au sol. 

Vue de la terre, la demi-vie du muon est 22,5 s, la distance parcourue est de  6707,2 m 

Pour le muon, sa demi-vie est 2,2 s et la distance parcourue est 656,4 m 
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La composition des vitesses 
 

Une fusée se déplace à la vitesse v = 0,5c par rapport à la terre. Un missile passe à côté 
de la fusée à la vitesse u = 0,5c mesurée à partir de la fusée. Quelle est la vitesse w du missile 
mesurée à partir du sol ? 
 

 

w  = v + u 
 

tanh (w) = w/c tanh (v) = v/c tanh (u) = u/c 

w = atanh (w/c) v = atanh (v/c) u = atanh (u/c) 

   

w/c = tanh (w)     

w = c [tanh (w)    

w = c [tanh (v+u)   

w = c [tanh (atanh (v/c)+ atanh (u/c)) = w = (u + v)/(1+ uv/c2) 

 
 

w = c [tanh (atanh (0,5)+ atanh (0,5)) Si u = c  alors w = c      (atanh(+1) = +∞, tanh(+∞) = +1) 

Même vitesse, c’est la constance de la vitesse de 
la lumière 
 

w = c [tanh (0,549306 + 0,549306) 

w = c [tanh (1,098612) 

w = 0,8c 
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Les quadrivecteurs 
 
 Dans les systèmes en trois dimensions, la grandeur, orientation et sens d’une entité 
physique sont modélisés sous forme d’un vecteur. Exemple : la force possède une grandeur, elle 
s’applique dans une direction, selon un certain sens. En relativité restreinte, les grandeurs 
physiques sont représentées par des quadrivecteurs, qui généralisent les vecteurs classiques à 
quatre dimensions. 
 
Les coordonnées du quadrivecteur « position-temps » s’écrivent sous ces formes  
 

r =  (ct;r ) = (ct;x;y;z) ou 
 

  ct  

  x  

r =  y 

z 
      ou    r = (x0

 ; x1; x2 ; x3 ) où la dimension x0
 =  ct 

 

    

 
Le quadrivecteur « position-temps » représente un événement dans l’espace-temps. 
La « grandeur » du quadrivecteur est 

II r II =    c2t2 - r2  = c2t2- ( x2 + y2 + z2  ) 

 
II r II 2 =   (ct)2 – (r)2  = c2t2- ( x2 + y2 + z2  ) = c2t’2- ( x’2 + y’2 + z’2  ) 

 
Cette valeur est l’invariant relativiste. « II r II » a la même valeur dans tous les référentiels au 
repos ou en mouvement de translation rectiligne uniforme (référentiel inertiel, aussi nommé 
galiléen).  Les coordonnées de r changent d’un référentiel à l’autre, mais sa grandeur ne change 
pas. 
 
La grandeur du quadrivecteur est appelée « pseudo-norme ». 

 

 y = y’ = z = z’= 0 
 

R cta   =  6,17737808 xa  = 5,4 

R’ ct’a =  5 x’a 
= 

4 

 

R II r II 2 

= 
6, 177378082 – 

5,42 

= 9 

R’ II r II 2 = 52 - 42 = 9 

 II r II    = 3  

 

La pseudo-norme de r est 3 
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II r II 2=   (ct)2 - (r)2 

 

Si  I ct I    =   I r I         =>  II r II 2 = 0  
 
II r II 2 = 0  
 
Le quadrivecteur est sur le cône de lumière 
 
La pseudo-norme est nulle 

 

 

 

II r II 2 =   (ct)2 - (r)2 

 

Si  I ct I    >   I r I      =>  II r II 2 > 0 

  

II r II 2 > 0  
 
Le quadrivecteur est à l’intérieur du cône de 
lumière  
 
La pseudo-norme est positive 

 

 

 

II r II 2 =   (ct)2 - (r)2 

 

Si  I ct I    <   I r I      =>  II r II 2 < 0 

  

II r II 2 < 0  
 
Le quadrivecteur est à l’extérieur du cône de 
lumière 
 
La pseudo-norme est négative 
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L’intervalle 

 
 
 
L’intervalle est la 
distance spatio-
temporelle entre 
deux événements. 
 
Soit 2 événements A 
et B 
 
La différence des 
quadrivecteurs a 
pour coordonnées la 
différence des 
coordonnées. 

 

 

 

 

  cta  

  xa  

ra =  ya  

     za  
 

   ctb  

  xb  

rb =  yb  

     zb  
 

 
 

ra - rb = 

 cta  

 xa  

 ya  

 za  
 

- 

 ctb  

 xb  

 yb  

 zb  
 

= 

 cta - ctb  

 xa - xb  

 ya -yb  

 za - zb  
 

 
 
La pseudo-norme est 
 

II ra - rb II 2  =  c2
 (ta – tb ) 2

 – ( x a – xb ) 2
 – ( y a – yb ) 2

 – ( z a – zb ) 2 

 

I   II ra - rb II 2  =  c2
 (Δt) 2 – d2

ab 
 
 

 

I est l’intervalle.  Comme I est la pseudo-norme au carré, l’intervalle est un invariant relativiste 
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Intervalle du genre temps 

I > 0   si   I c Δt I > dab I Δt I > dab/c Le temps qui s’est écoulé entre l’événement A et B 
est plus grand que le temps qu’il aurait fallu à la 
lumière pour se rendre de A à B 

  Un signal physique peut se propager entre les deux 
événements 

  Les événements pourraient être reliés causalement 

 
Intervalle du genre espace 

I < 0   si   I c Δt I < dab I Δt I < dab/c Le temps qui s’est écoulé entre l’événement A et B 
est plus petit que la distance divisée par c. 

  Un signal physique ne peut se propager entre les 
deux événements 

  Les événements ne peuvent être reliés causalement 

 
Intervalle du genre lumière 

I = 0   si   I c Δt I = dab I Δt I = dab/c Le temps qui s’est écoulé entre l’événement A et B 
est exactement le temps qu’il faut à la lumière pour 
se rendre de A à B 

 
 
 
 

 

Intervalle du genre lumière 
    c te3 =  xe3    et   c te1 =  xe1 

 

    c2 (te3-te1)2
 =   (xe3-xe1)2 

 
 
 
Intervalle du genre temps 
  c2 (te2-te1)2

 >   (xe2-xe1)2 

 

 

 

 

Intervalle du genre espace 
  c2 (te4-te1)2 

 <   (xe4-xe1)2 

 
Un signal physique ne peut se propager   
entre e1 et e4, car il devrait voyager plus 
vite que la vitesse de la lumière. 
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La quadri-vitesse (quadrivecteur vitesse) 
 
On recherche une expression pour la vitesse dans l’espace-temps à 4 dimensions dont sa 
pseudo-norme sera invariante d’un référentiel à l’autre.  Examinons la situation suivante : Un 
référentiel R et une particule se déplaçant à une vitesse v pour ce référentiel (Vpt) (fig. page 18).  

Le déplacement de la particule dans son référentiel propre est c (Δtp).  Pour ce référentiel, la 
particule est immobile dans l’espace, elle ne se déplace que sur l’axe du temps. c (Δtp) est la 
distance parcourue pendant le temps Δtp dans l’espace-temps. Le carré de c (Δtp)   est l’intervalle 
I. 

I =  c2 ( Δtp)
2

 –  dp
2

ab 
  

I =  c2 ( Δtp)
2

 − 0 

I =  c2 ( Δtp)
2

  

 

Le temps dans un référentiel propre est le temps propre  dont l’intervalle est 

 

I =  c2 (∆τ)2    donc  I =  c2 ( Δtp)
2

 =  c2 (∆τ)2       

 

La pseudo-norme ( v ) de la quadri-vitesse est  √(𝑐2(∆𝜏)2)/(∆𝜏)2 = 𝑐   

distance/temps = vitesse 

 

De l’équation I = c2
 (Δ)2

  nous pouvons aussi déduire la valeur de  en fonction de I et de c 

Δ =  √𝐼  / 𝑐 
 

I et c sont des invariants relativistes alors Δ  est un invariant relativiste. L’équation du 
déplacement de la particule pour le référentiel R s’écrit ainsi : 

 

c2
 (Δt) 2 – (Δ x)  2  – (Δ y)  2  – (Δ z )  2 = c2

 (Δ) 2
 =  I 

 
Divisons la distance parcourue par le temps pour obtenir l’expression de la vitesse. 
 

c2
 (Δt/Δt) 2 – (Δx/Δt)  2  – (Δy/Δt)  2  – (Δz/Δt)  2  et pour conserver l’égalité, c2

 (Δ/Δt) 2 

 

c2
 (Δ/Δt) 2 =  c2 – [ (vx) 2 + (vy) 2 + (vz ) 2) ]  

 

c2
 (Δ/Δt) 2  =  c2 –  vpt

 2 
 

c2
 /p

2  =  [ c2 –  vpt
 2] de la page 4 : t =   = /t = p =  (1 – vpt

2/c2 ) 
 

c2
  =   p

 2  [ c2 –  vpt
 2]  p  = 1/ (1 –  vpt

 2/c2 ) = cosh ()p  => c2
  =  cosh2

 ()p  [ c2 –  vpt
 2] 

 

c  =    p
 2 c2 -  p

 2
 vpt

 2 est la grandeur (pseudo-norme) de la quadri-vitesse, invariable par 
changement de référentiel 
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La quadri-vitesse 
 

  c t     c dt/d τ   

  x      d x/ d τ   

v = dd τ  y   v =  d y/ d τ   

     z     d z/ d τ   

   
   Avec   𝛾 = 𝑑𝑡/𝑑 𝜏  et  𝑑 𝜏  = 𝑑𝑡/𝛾 
 
Pour la particule se déplaçant à la vitesse v dans le référentiel R  

 

   p  c     cosh () p   c   

   p  vx
      cosh () p   v  x   

v =   p  vy   v =  cosh () p   v  y   

      p  vz     cosh () p   v  z   

 
 
 

 tanh ()p      = v p /c 

    tanh ()p   c = v p 

sinh ()p /cosh ()p    c = v p 

    sinh ()p    c = cosh ()p v p 

 
pour le cas 1D (Si le mouvement est uniquement selon l’axe X) 

 
 

  cosh () p   c     cosh () p   c   

  cosh () p   v x     sinh  () p   c   

v =     v =  0    

          0   

 
La particule dans son référentiel propre 
 

   p  c   L’absence de déplacement dans l’espace implique un déplacement à la  

vitesse c dans la dimension temporelle (V = 0 et  = ).  Comme la 
particule dans son référentiel propre.  
II v II 2  =  v.v   

           =  p
2  c2 -  p

2 vpt
 2   

           =  p
2  (c2 - vpt

 2)   

           = c2  p
2  (1- vpt

 2/c2 )  

           = c2 

   p vx
    

v    p vy   

      p vz   
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sinh ()  c = cosh () v p 
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La quadri-quantité de mouvement (quadrivecteur Energie-Impulsion ) 
 

p = 
 

m 0 v 
  La quadri-quantité de mouvement est la masse multipliée 

par la quadri-vitesse. m0 ≡ masse au repos, immobile. 

                                                                                                                           pour le cas 1D 

   p m0 c     cosh () p  m0 c     

   p m0 vx
      cosh () p  m0 vx    cosh () p  m0 c 

p =   p m0 vy   p =  cosh () p  m0 vy  p =  sinh  () p  m0 c 

      p m0 vz     cosh () p  m0 vz     

 

p.p    =  m0
2c2 = II p II 2  

Lorsque v = 0,  p = cosh () m o c  =>  p = m o c 

II p II   =  m0 c   m0 c est la grandeur invariante de la quadri-quantité 
de mouvement 

 
La composante temporelle de la quantité de mouvement est l’énergie : Ptemp. = 𝜸 𝒎𝟎 𝒄 ≡ 𝑬/𝒄  
(On divise 𝐸 par 𝑐 pour que la composante temporelle du quadrivecteur énergie-impulsion porte la même 
dimension que ses composantes spatiales). 
 
Énergie-impulsion d’une particule 

 

 

Etotal /c  = cosh() m0 c   Et = cosh() m0 c2  

E0 /c  = cosh() m0 c   E0 particule immobile 

             cosh() = 1 pour une particule 
                                 immobile 
E0 /c = m0 c        Énergie au repos            
E0     = m0 c2        Appelée énergie de masse 
 

P       = sinh() m0 c  

             sinh() c =  p  p  c 

                             =  p  v p /c * c 

                             =  p  v p  

                             = cosh() v 

P       =  p  m0 v  

P       = cosh () m0 v  

Etotal           = E0 + Ek 

Et           = cosh () m0 c2   

E0 + Ek   = cosh () m0 c2 

Ek           = cosh () m0 c2 - m0 c2 

Ek           = m0 c2  (cosh () -1 )    Énergie 
cinétique 

 
m0

2 c2       = (E t /c) 2   - P2                         
(E t /c) 2   = m0

2 c2   + P2   

E t 
2              = m0

2 c4  + P2 c2   

E t 
2              = c2  (m0

2 c2  + P2) 

 
L’impulsion est due au déplacement de la particule dans la dimension spatiale. 
Si on fournit de l’énergie à la particule, on augmente sa quadri-quantité de mouvement. Cet 
apport accroît l’énergie cinétique. Si l’on examine l’hyperbole, on voit que près de la vitesse de 
la lumière, l’apport d’énergie augmente peu la vitesse de la particule, même avec beaucoup 
d’énergie.  
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- La quadri-quantité de mouvement est conservée au cours des interactions, des 
chocs.  

p  après = p avant  
 

- Le produit scalaire de quadrivecteurs est invariant. Il est le même dans tous les 
référentiels. Invariant par changement de référentiel. 

 
Quadrivecteur Energie-Impulsion pour une particule de masse nulle, mais d’énergie finie 

 
Le photon n’a pas de masse, mais il véhicule de l’énergie. E ≠ 0, m0 = 0 
 

E = cosh () m0c2   cosh () tend vers l’infini et la masse est nulle, nous avons une  
forme indéterminée. Cette équation ne s’applique pas pour le photon. 
 

Abordons une écriture plus générale de l’équation du Quadrivecteur Energie-Impulsion 

En partant de E / c2 = cosh () m0 =   p  m0
 

   p  m0 c   

   p  m0 vx   

p =   p  m0 vy   

      p  m0 vz   
 

  E / c   

  E / c  vx / c    

p =  E / c  vy / c   

     E / c  vz / c   
 

 

Le photon se déplace à la vitesse c, la norme de vx / c, vy / c, vz / c vaut 1. 
Pour v = c,  m0 = 0,  déplacement sur l’axe Ox à la vitesse c 
 

  E / c   

  E / c  vx / c    

p =  E / c    

     E / c    
 

   E / c   

  E / c     

 =  0   

        
 

 
La quantité de mouvement est non nulle. Un photon, lors d’une collision, va occasionner un 
mouvement de recul que nous appelons pression de radiation. 
 
E = hf   constante de Plank multipliée par la fréquence de l’onde lumineuse 
 
p = E/c = hf/c  
 
p = h/λ    constante de Plank divisée par la longueur d’onde de l’onde lumineuse 
 
Le temps pour une particule de masse nulle  

t =   =     (1 – v 2/c2 ) où v = c  => t =  = t  =  =  =  

t =  

 

Pour un observateur, le temps d’une particule voyageant à la vitesse « c » est figé. 
C’est pour cela que le photon est stable, il n’a pas de durée de demi-vie. 
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Collision inélastique 

 
Deux particules identiques de masse m égale qui entrent en collision. Les vitesses sont 
identiques, mais de sens inverse.  La collision est inélastique, on obtient une nouvelle particule 
immobile de masse M. On prend comme référentiel celui de la masse M.  

 
Note : les vecteurs sont exprimés dans un espace-temps 1+1D, ou que les composantes y, z sont 
négligées 
 
Le total de quadri-quantité de mouvement est conservé. P3 sera égal à la somme de P1 + P2 

 

P1  P2  P3 

cosh () m0c   +   cosh () m0c = M0 c 

sinh  () m0c   -sinh () m0c  0 

 

2 cosh () m0c = M0c 

cosh () 2 m0 = M0 M sera plus grande que la somme des 2 masses m d’un facteur cosh () 

 

Toute l'énergie cinétique des particules est transformée en énergie de masse, en matière. 
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Au « Grand collisionneur de hadrons (LHC) » en Europe, ils se servent de ce type de collision 
pour créer des particules. Ce qui a permis de trouver le boson de Higgs. 
 
 
Choc mou entre 2 particules de même masse 

Deux particules identiques de masse m égale qui entrent en collision. On prend comme 
référentiel celui de la masse m2. m2 est donc immobile. La vitesse de m1 est égale à v et est sur 
l’axe x vers la particule m2. La collision est un choc mou, on obtient une nouvelle particule de 
masse M avec une certaine énergie cinétique par rapport au référentiel de m2. 
 

 

 
 
Le total de quadri-quantité de mouvement est conservé. P3 sera égal à la somme de P1 + P2 

P1  P2  P3 

cosh () m0c   + m0c = cosh (') M0 c 

sinh  () m0c  0  sinh  (') M0 c 

 

P1 + P2  P3  

m0c (cosh () +1)   = cosh (') M0 c =            Et / c 

m0c  sinh  ()   sinh  (') M0 c                 P 

 
 
Le but de ce qui va suivre est d'isoler M.  

    

m0 (cosh () +1)   = cosh (') M0    

m0  sinh  ()   sinh  (') M0    

 
 

Soustraire le carré de la dimension temporelle du carré de la dimension spatiale pour 
obtenir le carré de la pseudo-norme de la quadri-quantité de mouvement 
 
 (Et /c)2 – P2 = m0

2c2 
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[m0
2 ( cosh2 () +1 + 2 cosh () )] – [m0

2 sinh2 ()] 

 m0
2 ( cosh2 () +1 + 2 cosh () – sinh2 () ) sachant que : cosh2 () - sinh2 () = 1 

 m0
2 ( 1 + 1 + 2 cosh ()) 

 m0
2 ( 2 + 2 cosh ()) = cosh2 (') M0

2 - sinh2  (') M0
2 

 m0
2 ( 2 + 2 cosh ()) = M0

2 ( cosh2 (') - sinh2  (') ) 

 m0
2 ( 2 + 2 cosh ()) = M0

2  

 m0
  2 + 2 cosh ()   = M0 

M0 = m0
  2 (1 + cosh ())    

sinh  () m0c = sinh  (') M0c implique     cosh  () m0v = cosh  (') M0v’   l‘impulsion est identique 
 
L’énergie de P1 >  P2, mais l’énergie de masse E0 est identique. L’excédent est dans l’énergie 
cinétique de P1. 

 

Si v<<c  cosh () ~ 1  => M0 = 2m0  
 
M0 ≥ 2m0 
 
Une partie de l'énergie fournie se retrouve en énergie cinétique de la masse M. Ce n'est pas 
toute l'énergie fournie qui est transformée en masse. 
 
Note : les vecteurs sont exprimés dans un espace-temps 1+1D, ou que les composantes y, z sont 
négligées 
 
 
 
Note sur les conventions de signature 
 
Dans tout le présent document, nous adoptons la métrique de Minkowski à signature (+ – – –) :  
 
  𝑑𝑠2 =  𝑐2𝑑𝑡2 −  𝑑𝑥2 −  𝑑𝑦2 −  𝑑𝑧2,       𝜂μν =  𝑑𝑖𝑎𝑔(1,  − 1,  − 1,  − 1). 

 
Certains auteurs — en particulier les manuels de physique anglophones tels que Spacetime 
Physics (Taylor & Wheeler) ou Gravitation (Misner, Thorne & Wheeler) — préfèrent la 
convention (– + + +) : 
 
   𝑑𝑠2 =  − 𝑐2𝑑𝑡2 +  𝑑𝑥2 +  𝑑𝑦2 +  𝑑𝑧2,       𝜂μν =  𝑑𝑖𝑎𝑔(−1,  + 1,  + 1,  + 1). 
 
Les deux signatures sont mathématiquement équivalentes ; elles décrivent la même géométrie 
de l’espace-temps. Pour passer de l’une à l’autre, il suffit d’inverser le signe de la métrique et de 
tous les produits scalaires (par exemple : 𝑝2 = 𝑝μ𝑝μ)   Les résultats physiques, tels que la valeur 

de l’intervalle invariant ou les lois de conservation de la quadri-impulsion, restent inchangés ; 
seul le placement des signes dans les formules varie. 
 
Le choix (+ – – –) est fait ici pour rester cohérent avec la majorité des cours francophones, mais 
le lecteur habitué à la signature (– + + +) peut traduire chaque équation en multipliant 
simplement 𝑑𝑠² et la métrique  𝜂μν par –1. 
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« Qu’est-ce que le temps en relativité restreinte? 
 

En relativité restreinte, le temps ne peut être dissocié de l’espace : ensemble, ils forment 
un continuum appelé espace-temps. Ce lien fondamental implique qu’un déplacement 
dans l’espace influence la manière dont le temps est perçu et mesuré — et 
réciproquement. 
 
Le temps, noté t, est la grandeur mesurée par une horloge de référence, c’est-à-dire un 
système physique stable présentant des transitions cycliques. Il permet de mesurer la 
durée entre deux événements au sein d’un référentiel donné. 
 
Selon la relativité restreinte, un observateur constate que la durée séparant deux 
événements dans un système en mouvement par rapport à lui est dilatée d’un facteur 

 

𝛾 =
1

√1 −
𝑣2

𝑐2

 

 
phénomène appelé dilatation du temps. 
 
En conséquence, dans un référentiel en mouvement, tous les processus physiques — qu’il 
s’agisse d’horloges, de réactions chimiques ou de rythmes biologiques — sont 
effectivement « ralentis » du point de vue de l’observateur. 
 
Du point de vue de la personne en mouvement, c’est elle qui se considère au repos, et 
c’est le monde extérieur qui semble se déplacer. Les lois de la physique lui paraissent 
inchangées : sa montre fonctionne de façon habituelle, son cœur bat à rythme normal. Si 
elle pouvait observer l’observateur initial, elle le verrait également évoluer au ralenti. 
 
La symétrie de la dilatation vaut strictement tant que les deux observateurs restent 

chacun dans un référentiel inertiel distinct; elle est levée dès qu’un des deux suit une 

trajectoire non inertielle (demi-tour par exemple), ce qui conduit à un temps propre 

effectivement plus court pour l’observateur ayant quitté le référentiel inertiel. 

 

Description parfaite du phénomène. Cette "dilatation" n'est pas une hypothèse, mais une 

déduction mathématique inévitable découlant des deux postulats d'Einstein : 

1. Le principe de relativité : les lois de la physique sont identiques dans tous les référentiels 

inertiels. 

2. La constance de la vitesse de la lumière : la vitesse de la lumière dans le vide (c) est la 

même pour tous. 

Pour que ces deux affirmations soient vraies simultanément, les mesures de temps (et d'espace) 

doivent s'ajuster en fonction de l'observateur. La formule qui régit cette dilatation est : 
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𝛥𝑡′ =  𝛾Δ𝑡 =  
𝛥𝑡

√1 −
𝑣2

𝑐2

   

Où Δt′ est la durée "plus longue" mesurée par l'observateur externe, et Δt est le temps propre 

mesuré dans le référentiel en mouvement. 
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Conclusion 

En définitive, la relativité restreinte transforme en profondeur notre vision de l’espace et du 

temps en montrant que ces deux notions, autrefois considérées comme absolues, s’unissent 

dans un continuum à quatre dimensions où seul l’intervalle spatio-temporel demeure invariant. 

Partant de deux postulats simples — l’invariance de la vitesse de la lumière et l’équivalence des 

référentiels inertiels — nous avons mis en évidence : 

• la dilatation du temps, responsable du ralentissement des horloges en mouvement, 

• la contraction des longueurs, expliquant la réduction apparente des objets en 

translation, 

• le formalisme quadrivectoriel, qui unifie vitesse, position et quantité de mouvement 

dans des objets géométriques conservés par les transformations de Lorentz, 

• et les conséquences physiques pour les particules massives ou sans masse, ainsi que 

pour les processus de collision. 

Ce cadre, validé par de nombreuses expériences, constitue le socle de la physique moderne et 

prépare naturellement le passage à la relativité générale, où la géométrie de l’espace-temps 

devient dynamique. Au-delà de sa portée théorique, les principes de la relativité restreinte 

s’inscrivent au cœur des technologies d’aujourd’hui — du GPS aux accélérateurs de particules — 

et irriguent toutes les disciplines physiques. 

Ainsi, loin d’être une simple « correction » à la mécanique classique, la relativité restreinte offre 

un nouveau paradigme indispensable pour comprendre l’Univers à grande vitesse et jette les 

bases de nos explorations futures, de l’infiniment petit à l’infiniment grand. 
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Annexe 1 

Trigonométrie à partir d’un triangle rectangle 

 

Hypoténuse Côté 

opposé 

à l’angle  

 
Côté adjacent à l’angle  

 

  

 Hypoténuse     Côté 

opposé 

à l’angle  

 
Côté adjacent à l’angle  

 

 

Pour un triangle rectangle, quelle que soit la grandeur du triangle, le rapport entre les différents 

côtés semblables est toujours égal pour un même angle. C'est-à-dire : 

 

Le rapport du « Côté adjacent/Hypoténuse » est appelé Cosinus de  Il a toujours la même 

valeur quelle que soit la grandeur du triangle, ceci pour un même angle . 

 

Le rapport du « Côté opposé/Hypoténuse » est appelé Sinus de  Il a toujours la même valeur 

quelle que soit la grandeur du triangle, ceci pour un même angle . 

 

Le rapport du « Côté opposé/Côté adjacent » est appelé Tangente de  Il a toujours la même 

valeur quelle que soit la grandeur du triangle, ceci pour un même angle .  

 

Remarque : Sinus Cosinus   égale  

Côté opposé/Hypoténuse divisé par Côté adjacent/Hypoténuse 

Côté opposé/Côté adjacent 

Tangente de  
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Les fonctions inverses 

 

𝐜𝐨𝐬(𝜽) = 𝐱    implique que nous connaissons l'angle et que nous cherchons x. 

 

Dans différentes situations c'est l'inverse qui se présente; nous connaissons x et nous cherchons 

l'angle θ.  

 

Les fonctions inverses sont celles-ci et elles peuvent s'écrire sous différentes formes : 

arcsinus      ou asin  ou sin-1 

arcosinus   ou acos  ou cos-1 

arctangente    ou atan  ou tan-1 

 

 

Équation pratique : 

𝐜𝐨𝐬𝟐(𝜽) + 𝐬𝐢𝐧𝟐(𝜽) = 𝟏 

 

 

Le triangle rectangle traité ici, peut être vu comme un triangle qui évolue dans un cercle de 

rayon « 1 » où r est l’hypoténuse du triangle. 
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Trigonométrie hyperbolique 
 

  Hypoténuse 

 hyperbolique 

          

Côté opposé à  

                       
Côté adjacent à  

 

La trigonométrie hyperbolique est semblable, sans représenter la même chose que la 

trigonométrie du triangle rectangle qui évolue dans un cercle.  C’est un triangle rectangle qui 

évolue selon une fonction hyperbolique (𝑥2 − 𝑦2 = 1).  

 

(côté adjacent)² - (côté opposé)² = (hypoténuse hyperbolique)² 

 

Le « Côté adjacent » =  cosh(𝜃) Hypoténuse. 

 

Le « Côté opposé » =  sinh(𝜃)  Hypoténuse. 

 

Le rapport du « Côté opposé/Côté adjacent » est appelé Tangenteh de    

 

Remarque Sinush   Cosinush   égale  

Côté opposé/Côté adjacent 

Tangenth de  

  

Équation pratique : 

        cosh2  − sinh2  = 1 

 

 

 

Les fonctions inverses 

 

𝐜𝐨𝐬𝐡(𝜽) = 𝐱    implique que si l’angle θ est donné alors on calcule x. 
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Dans différentes situations c'est l'inverse qui se présente; nous connaissons x et nous cherchons 

l'angle θ.  

 

Les fonctions inverses sont celles-ci et elles peuvent s'écrire sous différentes formes : 

arc sinus hyperbolique       ou asinh  ou sinh-1 

arc cosinus hyperbolique     ou acosh  ou cosh-1 

arc tangente hyperbolique      ou atanh  ou tanh-1 

 

 

  
 

 

 

Détails mathématiques 

 

Q6 Les fonctions hyperboliques et réciproques : 

https://www.youtube.com/watch?v=JrfY9TREQaA 

 

Fonctions hyperboliques et hyperbole unitaire 

https://www.youtube.com/watch?v=JKCGfrt8SNQ  

  

https://www.youtube.com/watch?v=JrfY9TREQaA
https://www.youtube.com/watch?v=JKCGfrt8SNQ
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Trigonométrie hyperbolique appliquée à la relativité restreinte 

 

 
 

  

vt = sinh(𝜃)  Hypoténuse  

ct = cosh(𝜃) Hypoténuse  

tanh  = sinh    cosh   

tanh  = vt / ct 

tanh  = v / c 

 

Pour obtenir  , faire la fonction inverse de tanh  = v / c : atanh (v/c) 

 = atanh (v/c) 

 est défini comme le paramètre angulaire de vitesse relativiste. Ce paramètre θ est appelé 

paramètre de rapidité ou rapidité hyperbolique. 

 

Le triangle change en fonction de v. 

Cosh  vaut 1 quand la vitesse est nulle (côté adjacent = grand côté). 

Plus v augmente, plus cosh  augmente, ceci vers l’infini. 

 

En relativité restreinte 

• Hypoténuse est l′intervalle d′espace − temps (l′invariant) 

• Le côté opposé est la coordonnée spatiale 

• Le côté adjacent est la coordonnée temporelle 

x 
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• Pour le quadrivecteur position-temps, le côté opposé représente la coordonnée 

spatiale (x). 

• Pour le quadrivecteur énergie-impulsion, le côté opposé représente la quantité de 

mouvement (ou impulsion, P). 

 

• Pour le quadrivecteur position-temps, le côté adjacent représente la coordonnée 

temporelle multipliée par c, soit ct. 

• Pour le quadrivecteur énergie-impulsion, le côté adjacent représente l'énergie 

totale divisée par c, soit E/c. 

 

• Pour le quadrivecteur position-temps, l'hypoténuse représente le temps propre 

multiplié par c (cτ). C'est le temps qui s'écoulerait sur une horloge se déplaçant le 

long de cette hypoténuse. 

• Pour le quadrivecteur énergie-impulsion, l'hypoténuse représente la masse au 

repos multipliée par c (m₀c), qui est directement liée à l'énergie de masse au repos 

de la particule. 
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Annexe 2 

Transformation de Lorentz 

  1/ (1 - v2/c2)   v/c 

cosh  ()  =    tanh () = v / c   = tanh ()  ()  = atanh (v/c) 

   =  tanh ()  cosh  () tanh () = sinh  ()  cosh  ()   

   =  sinh  ()  cosh  ()  cosh  () 

   =  sinh  ()  

R R’→ v 

 
 

ct = cosh () ct’  +  sinh () x’ 

 
 

x = sinh () ct’  +  cosh () x’ 

 
 

ct  cosh () sinh () ct’ 

 =    

x  sinh () cosh () x’ 
 

 
 

ct =  ct’  +    x’ 

 
 

x =    ct’  +   x’ 

 
 

ct       ct’ 

 =    

x       x’ 
 

 

-v ←R R’ La vitesse étant négative  est négatif ( inversion de la matrice ) 

 
 

ct’ = cosh () ct  -  sinh () x 

 
 

x’ = - sinh () ct  + cosh () x 

 
 

ct’  cosh () - sinh () ct 

 =    

x’  - sinh () cosh () x 
 

 
 

ct’ =  ct  -    x 

 
 

x’ = -    ct  +   x 

 
 

ct’     −   ct 

 =    

x’  −      x 
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